Câu hỏi:

07/10/2025 101 Lưu

Người ta chế tác một giọt nước bằng thủy tinh. Biết giọt nước thủy tinh này là vật thể tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\sqrt {4 - {x^2}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { - 2 \le x \le 0,6} \right)\\ - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}\,\,\,\,\left( {0,6 < x \le 4,6} \right)\end{array} \right.\] và trục \[Ox\] quanh trục \[Ox\] (đơn vị trên trục là centimet). 

  Người ta chế tác một giọt nước bằng thủy tinh. Biết giọt nước thủy tinh này là vật thể tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\sqrt {4 - {x^2}} (ảnh 1)

a) Hàm số \[y = f\left( x \right)\] liên tục tại \[x = 0,6\].

b) Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.

c) Thể tích của giọt nước thủy tinh này lớn hơn 40 cm3.

d) Biết khối lượng riêng của thủy tinh là \[\rho  = 2,6\] g/cm3, khối lượng của giọt nước thủy tinh này là 102,22 g (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. \(\mathop {\lim }\limits_{x \to 0,{6^ - }} f\left( x \right) = \sqrt {4 - {{\left( {0,6} \right)}^2}}  = \sqrt {4 - 0,36}  = \sqrt {3,64}  \approx 1,907\);

\(\mathop {\lim }\limits_{x \to 0,{6^ + }} f\left( x \right) =  - \frac{{\sqrt {91} }}{{20}}.0,6 + \frac{{23\sqrt {91} }}{{100}} \approx 1,907\).

Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0,6\).

b) Đúng. Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.

c) Sai. Thể tích của giọt nước thủy tinh này là:

\[V = {V_1} + {V_2} = \pi \int\limits_{ - 2}^{0,6} {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}{\rm{d}}x + } \,\pi \int\limits_{0,6}^{4,6} {{{\left( { - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}} \right)}^2}{\rm{d}}x}  = \frac{{4693\pi }}{{375}} \approx 39,32\] cm3.

d) Đúng. Khối lượng của giọt nước thủy tinh này là: \(m = \rho .V = 2,6.\frac{{4693\pi }}{{375}} \approx 102,22\)g.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t}  = {t^2}\mathop |\nolimits_0^1  = 1\left( {\rm{m}} \right)\).

b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:

\(s = \int\limits_0^1 {2t{\rm{d}}t}  + \int\limits_1^2 {2{\rm{dt}}}  = {t^2}\mathop |\nolimits_0^1  + 2t\mathop |\nolimits_1^2  = 3\left( {\rm{m}} \right)\).

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y =  - \frac{{{x^2}}}{3}\),\(x =  - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x}  - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Câu 4

A. \[2\tan x + 2\cot x + C\].                                                                        
B. \[\frac{1}{3}{\tan ^3}x + \frac{1}{3}{\cot ^3}x + C\].
C. \[\tan x + \cot x - 2x + C\].                                                                        
D. \[\tan x - \cot x - 2x + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP