Một người điều khiển xe Taxi xuất phát từ trạm thu phí muốn nhập làn vào đường cao tốc, chuyển động tăng tốc với tốc độ \(v\left( t \right) = \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\left( {{\rm{m/s}}} \right)\) (trong đó, \(t\) là thời gian tính bằng giây kể từ khi Taxi chuyển động rời trạm thu phí). Từ trạm thu phí đó, một xe Cứu thương cũng xuất phát, chuyển động thẳng cùng hướng với xe Taxi nhưng chậm hơn 1 giây so với xe Taxi và có gia tốc bằng \(a\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\) (\(a\) là hằng số). Sau khi xe Cứu thương xuất phát được \(17\)giây thì đuổi kịp xe Taxi. Biết rằng, xe Taxi nhập làn cao tốc sau 20 giây và cả hai xe duy trì sự tăng tốc trong \(28\) giây kể từ khi Taxi rời trạm thu phí.
a) Quãng đường (kết quả làm tròn đến hàng đơn vị) xe Taxi đi được từ trạm thu phí đến khi nhập làn khoảng \(187\,{\rm{m}}\).
b) Xe cứu thương chuyển động với gia tốc \(a = \frac{{300}}{{289}}\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).
c) Vận tốc (kết quả làm tròn đến hàng đơn vị) của xe Cứu thương tại thời điểm đuổi kịp xe Taxi khoảng \(16\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).
d) Trong khoảng thời gian kể từ lúc hai xe gặp nhau cho đến giây thứ \(28\) (kể từ khi Taxi chuyển động rời trạm thu phí) vận tốc trung bình của xe Cứu thương lớn hơn vận tốc trung bình của xe Taxi.
Một người điều khiển xe Taxi xuất phát từ trạm thu phí muốn nhập làn vào đường cao tốc, chuyển động tăng tốc với tốc độ \(v\left( t \right) = \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\left( {{\rm{m/s}}} \right)\) (trong đó, \(t\) là thời gian tính bằng giây kể từ khi Taxi chuyển động rời trạm thu phí). Từ trạm thu phí đó, một xe Cứu thương cũng xuất phát, chuyển động thẳng cùng hướng với xe Taxi nhưng chậm hơn 1 giây so với xe Taxi và có gia tốc bằng \(a\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\) (\(a\) là hằng số). Sau khi xe Cứu thương xuất phát được \(17\)giây thì đuổi kịp xe Taxi. Biết rằng, xe Taxi nhập làn cao tốc sau 20 giây và cả hai xe duy trì sự tăng tốc trong \(28\) giây kể từ khi Taxi rời trạm thu phí.
a) Quãng đường (kết quả làm tròn đến hàng đơn vị) xe Taxi đi được từ trạm thu phí đến khi nhập làn khoảng \(187\,{\rm{m}}\).
b) Xe cứu thương chuyển động với gia tốc \(a = \frac{{300}}{{289}}\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).
c) Vận tốc (kết quả làm tròn đến hàng đơn vị) của xe Cứu thương tại thời điểm đuổi kịp xe Taxi khoảng \(16\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).
d) Trong khoảng thời gian kể từ lúc hai xe gặp nhau cho đến giây thứ \(28\) (kể từ khi Taxi chuyển động rời trạm thu phí) vận tốc trung bình của xe Cứu thương lớn hơn vận tốc trung bình của xe Taxi.
Quảng cáo
Trả lời:

a) Đúng. \({S_{{\rm{taxi}}}} = \int\limits_0^{20} {\left( {\frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right)} \,{\rm{d}}t \approx 187\left( {\rm{m}} \right)\).
b) Đúng. Quãng đường xe cứu thương từ \(t = 1\)đến \(t = 18\) là \({S_{ct}} = \frac{1}{2}a{.17^2} = \frac{{289a}}{2}\).
Quãng đường xe taxi đi từ \(t = 0\) đến \(t = 18\) là \({S_{{\rm{tax}}i}} = \int\limits_0^{18} {\left( {\frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right)dt} = 150\,{\rm{m}}\).
Khi đó ta có \(\frac{{289a}}{2} = 150 \Rightarrow a = \frac{{300}}{{289}}\).
c) Sai. Vận tốc xe cứu thương \(\frac{{300}}{{289}}.17 \approx 18\).
d) Đúng.
Quãng đường xe cứu thương \(\frac{1}{2}.\frac{{300}}{{289}}.289 + \frac{{5100}}{{289}}.11 \approx 344,3\).
Vận tốc trung bình của xe cứu thương là \(\frac{{344,3}}{{28}} \approx 12,3\).
Quãng đường taxi trong 28 giây là \(\int_0^{28} {\left( {\frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right)dt} \approx 209,3\).
Vận tốc trung bình của xe taxi là \(\frac{{209,3}}{{28}} \approx 7,5\).
Xe cứu thương có vận tốc trung bình lớn hơn.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):
d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.