Câu hỏi:

02/10/2025 44 Lưu

Tốc độ tăng trưởng của một đàn gấu mèo tại thời điểm \(t\) tháng kể từ khi người ta thả 100 cá thể đầu tiên vào một khu rừng được ước lượng bởi công thức \(P'\left( t \right) = 8t + 30\) (con/tháng), với \(P\left( t \right)\) là số lượng cá thể trong đàn tại thời điểm \(t\) tháng tương ứng. Dựa vào tốc độ tăng trưởng đã cho, hãy ước tính số cá thể của đàn gấu mèo này tại thời điểm 3 tháng kể từ khi chúng được thả vào rừng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số lượng cá thể trong đàn gấu mèo tại thời điểm \(t\) tháng là

\(P\left( t \right) = \int {P'\left( t \right){\rm{d}}t}  = \int {\left( {8t + 30} \right){\rm{d}}t}  = 4{t^2} + 30t + C\left( {{\rm{con}}} \right)\).

Vì ban đầu thả 100 cá thể gấu mèo nên \(P\left( 0 \right) = 100 \Leftrightarrow C = 100 \Rightarrow P\left( t \right) = 4{t^2} + 30t + 100\) (con).

Suy ra số cá thể của đàn gấu mèo này tại thời điểm 3 tháng kể từ khi chúng được thả vào rừng là

\(P\left( 3 \right) = {4.3^2} + 30.3 + 100 = 226\,\,\left( {{\rm{con\;}}} \right)\).

Đáp án: 226.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y =  - \frac{{{x^2}}}{3}\),\(x =  - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x}  - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Lời giải

a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t}  = \frac{{{t^3}}}{3} - 4{t^2} + C\).

b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).

Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.

c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

Trong thí nghiệm nuôi cấy một loại vi sinh vật, kí hiệu \(f\left( t \right)\) là tổng số lượng vi sinh vật sau \(t\) giờ. Biết rằng sau 3 giờ đầu tiên thì tổng số lượng v (ảnh 1)

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).

Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).

Câu 3

Một người điều khiển xe Taxi xuất phát từ trạm thu phí muốn nhập làn vào đường cao tốc, chuyển động tăng tốc với tốc độ \(v\left( t \right) = \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\left( {{\rm{m/s}}} \right)\) (trong đó, \(t\) là thời gian tính bằng giây kể từ khi Taxi chuyển động rời trạm thu phí). Từ trạm thu phí đó, một xe Cứu thương cũng xuất phát, chuyển động thẳng cùng hướng với xe Taxi nhưng chậm hơn 1 giây so với xe Taxi và có gia tốc bằng \(a\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\) (\(a\) là hằng số). Sau khi xe Cứu thương xuất phát được \(17\)giây thì đuổi kịp xe Taxi. Biết rằng, xe Taxi nhập làn cao tốc sau 20 giây và cả hai xe duy trì sự tăng tốc trong \(28\) giây kể từ khi Taxi rời trạm thu phí.

a) Quãng đường (kết quả làm tròn đến hàng đơn vị) xe Taxi đi được từ trạm thu phí đến khi nhập làn khoảng \(187\,{\rm{m}}\).

b) Xe cứu thương chuyển động với gia tốc \(a = \frac{{300}}{{289}}\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

c) Vận tốc (kết quả làm tròn đến hàng đơn vị) của xe Cứu thương tại thời điểm đuổi kịp xe Taxi khoảng \(16\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

d) Trong khoảng thời gian kể từ lúc hai xe gặp nhau cho đến giây thứ \(28\) (kể từ khi Taxi chuyển động rời trạm thu phí) vận tốc trung bình của xe Cứu thương lớn hơn vận tốc trung bình của xe Taxi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[2\tan x + 2\cot x + C\].                                                                        
B. \[\frac{1}{3}{\tan ^3}x + \frac{1}{3}{\cot ^3}x + C\].
C. \[\tan x + \cot x - 2x + C\].                                                                        
D. \[\tan x - \cot x - 2x + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP