Gọi \(V\) là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt x ,\) \(y = 0\) và \(x = 4\) quanh trục \(Ox\). Đường thẳng \(x = a\,\,\left( {0 < a < 4} \right)\) cắt đồ thị hàm số \[y = \sqrt x \] tại \(M\) (xem hình vẽ sau). Gọi \({V_1}\) là thể tích khối tròn xoay tạo thành khi quay tam giác \(OMH\) quanh trục \(Ox\). Biết rằng \(V = 2{V_1}\). Khi đó giá trị của \[a\] là bao nhiêu?

Câu hỏi trong đề: Bài tập ôn tập Toán 12 Kết nối tri thức Chương 4 có đáp án !!
Quảng cáo
Trả lời:
Ta có \(V = \pi \int\limits_0^4 {x\,} dx = 8\pi \) và tọa độ \(M\left( {a;\sqrt a } \right)\).
Khi quay tam giác \(OMH\) quanh trục \(Ox\) tạo thành hai hình nón có chung đáy:
Hình nón \(\left( {{N_1}} \right)\) có đỉnh là \(O\), chiều cao \({h_1} = OK = a\), bán kính đáy \(R = MK = \sqrt a \);
Hình nón \(\left( {{N_2}} \right)\) có đỉnh là \(H\), chiều cao \({h_2} = HK = 4 - a\), bán kính đáy \(R = MK = \sqrt a \).
Khi đó \({V_1} = \frac{1}{3}\pi {R^2}h{{\kern 1pt} _1} + \frac{1}{3}\pi {R^2}h{{\kern 1pt} _2} = \frac{4}{3}\pi a\); \(V = 2{V_1} \Leftrightarrow 8\pi = 2.\frac{4}{3}\pi a \Rightarrow a = 3\).
Đáp án: 3.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
a) Sai. Dựa vào đồ thị \(v\left( t \right)\).
b) Đúng. Trong \(3\) giây đầu tiên, vận tốc của chuyển động là \(v\left( t \right) = 11\,\left( {{\rm{m/s}}} \right)\).
Do đó quãng đường chất điểm chuyển động trong \(3\)giây đầu tiên là: \({S_1} = \int\limits_0^3 {11{\rm{d}}t} \,\,\left( {\rm{m}} \right)\).
c) Đúng. Trong khoảng thời gian từ \(8\) đến \(15\) giây, đồ thị \(v\left( t \right)\) là một đường thẳng đi qua hai điểm \(\left( {8;21} \right)\) và \(\left( {15;0} \right)\). Ta có: \(v\left( t \right) = at + b\).
Từ giả thiết ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}{8a + b = 21}\\{15a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 45}\end{array}} \right.\).
Do đó \(v\left( t \right) = - 3t + 45\,\,\left( {8 \le t \le 15} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\({S_2} = \int\limits_8^{15} {\left( { - 3t + 45} \right){\rm{d}}t} = - \frac{{3{t^2}}}{2}\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. + 45t\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. = \frac{{147}}{2} = 73,5\,\left( {\rm{m}} \right)\).
d) Sai. Trong khoảng thời gian từ \(3\) đến \(8\) giây đồ thị \(v\left( t \right)\) là một Parabol đi qua các điểm có tọa độ lần lượt là \(\left( {3;11} \right),\left( {5;3} \right),\left( {8;21} \right)\) có phương trình dạng: \(v\left( t \right) = a{t^2} + bt + c\).
Từ giả thiết ta có: \(\left\{ {\begin{array}{*{20}{c}}{9a + 3b + c = 11}\\{25a + 5b + c = 3}\\{64a + 8b + c = 21}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 20}\\{c = 53}\end{array}} \right.\)
Do đó: \(v\left( t \right) = 2{t^2} - 20t + 53\,\,\left( {3 \le t \le 8} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\[{S_3} = \int\limits_3^8 {v\left( t \right){\rm{d}}t} = \int\limits_3^8 {\left( {2{t^2} - 20t + 53} \right){\rm{d}}t = \,\,} \left( {\frac{{2{t^3}}}{3} - 10{t^2} + 53t} \right)\left| {\begin{array}{*{20}{c}}8\\3\end{array}} \right. = \frac{{115}}{3}\,\,\,\left( {\rm{m}} \right)\].
Vận tốc trung bình của chất điểm trong khoảng thời gian này là: \({v_{tb}} = \frac{{{S_3}}}{5} = \frac{{23}}{3} \approx 7,67\,\left( {{\rm{m/s}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Chất điểm chuyển động theo quy luật vận tốc \[v\left( t \right)\left( {{\rm{m/s}}} \right)\] có dạng đường thẳng khi \[0 \le t \le 3\left( {\rm{s}} \right)\] và \[8 \le t \le 15\left( {\rm{s}} \right)\] và \[v\left( t \rig (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/6-1759409201.png)



