Gọi \(V\) là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt x ,\) \(y = 0\) và \(x = 4\) quanh trục \(Ox\). Đường thẳng \(x = a\,\,\left( {0 < a < 4} \right)\) cắt đồ thị hàm số \[y = \sqrt x \] tại \(M\) (xem hình vẽ sau). Gọi \({V_1}\) là thể tích khối tròn xoay tạo thành khi quay tam giác \(OMH\) quanh trục \(Ox\). Biết rằng \(V = 2{V_1}\). Khi đó giá trị của \[a\] là bao nhiêu?

Quảng cáo
Trả lời:

Ta có \(V = \pi \int\limits_0^4 {x\,} dx = 8\pi \) và tọa độ \(M\left( {a;\sqrt a } \right)\).
Khi quay tam giác \(OMH\) quanh trục \(Ox\) tạo thành hai hình nón có chung đáy:
Hình nón \(\left( {{N_1}} \right)\) có đỉnh là \(O\), chiều cao \({h_1} = OK = a\), bán kính đáy \(R = MK = \sqrt a \);
Hình nón \(\left( {{N_2}} \right)\) có đỉnh là \(H\), chiều cao \({h_2} = HK = 4 - a\), bán kính đáy \(R = MK = \sqrt a \).
Khi đó \({V_1} = \frac{1}{3}\pi {R^2}h{{\kern 1pt} _1} + \frac{1}{3}\pi {R^2}h{{\kern 1pt} _2} = \frac{4}{3}\pi a\); \(V = 2{V_1} \Leftrightarrow 8\pi = 2.\frac{4}{3}\pi a \Rightarrow a = 3\).
Đáp án: 3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):
d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.