Gọi \(V\) là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt x ,\) \(y = 0\) và \(x = 4\) quanh trục \(Ox\). Đường thẳng \(x = a\,\,\left( {0 < a < 4} \right)\) cắt đồ thị hàm số \[y = \sqrt x \] tại \(M\) (xem hình vẽ sau). Gọi \({V_1}\) là thể tích khối tròn xoay tạo thành khi quay tam giác \(OMH\) quanh trục \(Ox\). Biết rằng \(V = 2{V_1}\). Khi đó giá trị của \[a\] là bao nhiêu?

Quảng cáo
Trả lời:
Ta có \(V = \pi \int\limits_0^4 {x\,} dx = 8\pi \) và tọa độ \(M\left( {a;\sqrt a } \right)\).
Khi quay tam giác \(OMH\) quanh trục \(Ox\) tạo thành hai hình nón có chung đáy:
Hình nón \(\left( {{N_1}} \right)\) có đỉnh là \(O\), chiều cao \({h_1} = OK = a\), bán kính đáy \(R = MK = \sqrt a \);
Hình nón \(\left( {{N_2}} \right)\) có đỉnh là \(H\), chiều cao \({h_2} = HK = 4 - a\), bán kính đáy \(R = MK = \sqrt a \).
Khi đó \({V_1} = \frac{1}{3}\pi {R^2}h{{\kern 1pt} _1} + \frac{1}{3}\pi {R^2}h{{\kern 1pt} _2} = \frac{4}{3}\pi a\); \(V = 2{V_1} \Leftrightarrow 8\pi = 2.\frac{4}{3}\pi a \Rightarrow a = 3\).
Đáp án: 3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t} = {t^2}\mathop |\nolimits_0^1 = 1\left( {\rm{m}} \right)\).
b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:
\(s = \int\limits_0^1 {2t{\rm{d}}t} + \int\limits_1^2 {2{\rm{dt}}} = {t^2}\mathop |\nolimits_0^1 + 2t\mathop |\nolimits_1^2 = 3\left( {\rm{m}} \right)\).
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



