B. Tự luận
Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\). Trong đó \(t\) tính bằng giờ \(\left( {0 \le t \le 15} \right)\), \(B'\left( t \right)\) được tính bằng khách/giờ. (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-l, Cornelissen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.
a) Viết công thức của hàm số \(B\left( t \right)\) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\).
b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?
c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?
d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?
B. Tự luận
Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\). Trong đó \(t\) tính bằng giờ \(\left( {0 \le t \le 15} \right)\), \(B'\left( t \right)\) được tính bằng khách/giờ. (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-l, Cornelissen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.a) Viết công thức của hàm số \(B\left( t \right)\) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\).
b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?
c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?
d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?
Quảng cáo
Trả lời:
a) Ta có\(B\left( t \right)\) là một nguyên hàm của hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\).
Do đó \(B\left( t \right) = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt = 5{t^4} - 100{t^3} + 500{t^2} + C\).
Nên \(B\left( t \right) = 5{t^4} - 100{t^3} + 500{t^2} + C\).
Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B\left( 1 \right) = 405 + C = 500 \Rightarrow C = 95\).
Vậy \(B\left( t \right) = 5{t^4} - 100{t^3} + 500{t^2} + 95,{\rm{ }}0 \le t \le 15\).
b) Số lượng khách tham dự lễ hội sau 3 giờ là: \(B\left( 3 \right) = {5.3^4} - {100.3^3} + {500.3^2} + 95 = 2300\)(khách).
c) Giá trị lớn nhất của hàm số \(B\left( t \right)\) trên đoạn \(\left[ {0;15} \right]\). Ta có:
\(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t = 0 \Rightarrow \left[ \begin{array}{l}t = 0\\t = 5\\t = 10\end{array} \right.\).
Ta có: \(B\left( 0 \right) = 95;B\left( 5 \right) = 3220;B\left( {10} \right) = 95,B\left( {15} \right) = 28220\).
Vậy Số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ.
d) Ta tìm \(t\) để hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\)đạt giá trị lớn nhất trên đoạn \(\left[ {0;15} \right]\). Ta có: \(B''\left( t \right) = 60{t^2} - 600t + 1000 = 0 \Rightarrow \left[ \begin{array}{l}t = \frac{{15 - 5\sqrt 3 }}{3}\\t = \frac{{15 + 5\sqrt 3 }}{3}\end{array} \right.\).
Ta có: \(B'\left( 0 \right) = 0;B'\left( {\frac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B'\left( {\frac{{15 + 5\sqrt 3 }}{3}} \right) \approx - 962,25;B'\left( {15} \right) = 15000\).
Khi đó, giá trị lớn nhất của hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\)trên đoạn \(\left[ {0;15} \right]\) bằng 15000 tại \(t = 15\).
Vậy tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất tại thời điểm 15 giờ.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t} = {t^2}\mathop |\nolimits_0^1 = 1\left( {\rm{m}} \right)\).
b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:
\(s = \int\limits_0^1 {2t{\rm{d}}t} + \int\limits_1^2 {2{\rm{dt}}} = {t^2}\mathop |\nolimits_0^1 + 2t\mathop |\nolimits_1^2 = 3\left( {\rm{m}} \right)\).
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



