Câu hỏi:

07/10/2025 65 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[f\left( x \right) = {e^x} + 2x\]. Khẳng định nào dưới đây đúng?

A. \[f\left( x \right) = {e^x} + 2x\].                                                                       
B. \[\int {f\left( x \right){\rm{d}}x} = {e^x} + 2{x^2} + C\].
C. \[\int {f\left( x \right){\rm{d}}x} = {e^x} - {x^2} + C\].                                  
D. \[\int {f\left( x \right){\rm{d}}x} = {e^x} + {x^2} + C\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \[\int {f\left( x \right){\rm{d}}x}  = \int {\left( {{e^x} + 2x} \right)} \,{\rm{d}}x = {e^x} + {x^2} + C\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(N'\left( 1 \right) = 18.1 - {3.1^2} = 15\) triệu tế bào/ml giờ.

b) Sai. Ta có \(\int {N'\left( t \right){\rm{d}}t}  = \int {\left( {18t - 3{t^2}} \right){\rm{d}}t}  = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

c) Đúng. Ta có \(N\left( t \right) = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

Mà \(N\left( 0 \right) = 10\) nên \(C = 10\).  Vậy \(N\left( t \right) = 9{t^2} - {t^3} + 10\).

Tại thời điểm \(t = 6\), ta có \(N\left( 6 \right) = {9.6^2} - {6^3} + 10 = 118\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml nên tại thời điểm \(t = 6\), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml.

d) Đúng. Tại thời điểm \(t = 7\) giờ, ta có \(N\left( 7 \right) = {9.7^2} - {7^3} + 10 = 108\) nên mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.

Câu 2

A. \({f_3}\left( x \right) = - \frac{1}{2}\cos 2x\).                                 
B. \({f_4}\left( x \right) = - \frac{1}{4}\cos 2x\).       
C. \({f_2}\left( x \right) = \cos 2x\).                                 
D. \({f_1}\left( x \right) = - \cos 2x\).

Lời giải

Chọn C

Ta có \({\left( {\frac{1}{2}\sin 2x} \right)^\prime } = \cos 2x\).

Câu 3

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc \(0\,\,\left( {{\rm{m/s}}} \right)\) đến \(10\,\,\left( {{\rm{m/s}}} \right)\) trong thời gian chưa biết \({t_1}\)​ giây theo hàm số vận tốc \({v_1}\left( t \right) = at\) (\(a\) gọi là gia tốc trong giai đoạn này, \(a\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Sau đó, robot tiếp tục di chuyển với vận tốc không đổi trong 40 giây. Cuối cùng, robot giảm tốc đều từ \(10\,\,\left( {{\rm{m/s}}} \right)\) và dừng lại đúng tại băng chuyền điểm \(B\) với thời gian \({t_2}\) giây theo hàm vận tốc \({v_2}\left( t \right) = 10 - bt\)(\(b\)gọi là gia tốc trong giai đoạn này, \(b\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Toàn bộ quá trình vận chuyển diễn ra trong tổng thời gian là 70 giây.

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc (ảnh 1)

a) Nếu gia tốc \(a = 0,5\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1}\) bé hơn \(21\) giây.

b) Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2}\) lớn hơn \(13\) giây.

c) \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

d) Tổng quãng đường mà robot đã di chuyển từ \(A\) đến \(B\) là \(550\,{\rm{m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(F\left( x \right) = 3{x^3} + 5\).        
B. \(F\left( x \right) = {x^3} - 5\).         
C. \(F\left( x \right) = {x^3} + 5\).         
D. \(F\left( x \right) = 6x + 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).                                     
B. \[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\]
C. \[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].                                  
D. \[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP