Câu hỏi:

02/10/2025 17 Lưu

Phần 3. Trắc nghiệm trả lời ngắn

Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi xe dừng hẳn thì vận tốc bằng 0, do đó \( - 4t + 20 = 0 \Leftrightarrow t = 5\) (giây).

Từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường là:

\(S = \int\limits_0^5 {v\left( t \right){\rm{d}}t}  = \int\limits_0^5 {\left( { - 4t + 20} \right){\rm{d}}t}  = 50\) (mét).

Đáp án: 50.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({f_3}\left( x \right) = - \frac{1}{2}\cos 2x\).                                 
B. \({f_4}\left( x \right) = - \frac{1}{4}\cos 2x\).       
C. \({f_2}\left( x \right) = \cos 2x\).                                 
D. \({f_1}\left( x \right) = - \cos 2x\).

Lời giải

Chọn C

Ta có \({\left( {\frac{1}{2}\sin 2x} \right)^\prime } = \cos 2x\).

Lời giải

Chọn C

Diện tích hình vuông có cạnh là \(\sqrt {9 - {x^2}} \) là \[S = 9 - {x^2}\].

Thể tích của vật thể đó bằng \[\int\limits_0^3 {\left( {9 - {x^2}} \right)} \,{\rm{d}}x = \left. {\left( {9x - \frac{{{x^3}}}{3}} \right)} \right|_0^3 = 18\].

Câu 5

A. \(F\left( x \right) = 3{x^3} + 5\).        
B. \(F\left( x \right) = {x^3} - 5\).         
C. \(F\left( x \right) = {x^3} + 5\).         
D. \(F\left( x \right) = 6x + 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 1\).                        
B. \(6\).                         
C. \(1\).                                
D. \(5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP