Nếu biết \(\sin a = \frac{8}{{17}},\,\tan b = \frac{5}{{12}}\) và \(a,\,b\) đều là các góc nhọn và dương thì \(\sin \left( {a - b} \right)\) là:
Câu hỏi trong đề: Đề kiểm tra Công thức lượng giác (có lời giải) !!
Quảng cáo
Trả lời:

Chọn C
Ta có \(a,\,b\) đều là các góc nhọn và dương.
\(\sin a = \frac{8}{{17}} \Rightarrow \cos a = \sqrt {1 - \frac{{64}}{{289}}} = \frac{{15}}{{17}}\).
\(\tan b = \frac{5}{{12}} \Rightarrow \cos b = \frac{1}{{\sqrt {1 + \frac{{25}}{{144}}} }} = \frac{{12}}{{13}} \Rightarrow \sin b = \tan b.\cos b = \frac{5}{{13}}\).
\( \Rightarrow \sin \left( {a - b} \right) = \frac{8}{{17}}.\frac{{12}}{{13}} - \frac{{15}}{{17}}.\frac{5}{{13}} = \frac{{21}}{{221}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Đặt \(t = \tan \frac{x}{2} = \frac{1}{2}\) nên \(\sin x = \frac{{2t}}{{1 + {t^2}}} = \frac{{2\frac{1}{2}}}{{1 + \frac{1}{4}}} = \frac{4}{5}\), \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{1}{4}}}{{1 + \frac{1}{4}}} = \frac{3}{5}\).
Vậy \(\frac{{\sin x}}{{2 - 3\cos x}} = \frac{{\frac{4}{5}}}{{2 - \frac{9}{5}}} = 4\).
Câu 2
Lời giải
Chọn D
Vì \[A,\,\,B,\,\,C\] là các góc của tam giác \[ABC\] nên \[A + B + C = {180^o} \Rightarrow C = {180^o} - \left( {A + B} \right).\]
Do đó \[C\] và \[\left( {A + B} \right)\] là 2 góc bù nhau.
\[ \Rightarrow \sin C = \sin \left( {A + B} \right);\,\,\cos C = - \cos \left( {a + b} \right);\,\,\tan C = - \tan \left( {A + B} \right);\,\,\cot C = \cot \left( {A + B} \right).\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.