Câu hỏi:

03/10/2025 406 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho biết \(\cos 2\alpha = - \frac{1}{4}\)\(\pi < \alpha < \frac{{3\pi }}{2}\). Khi đó:

a) \(\sin \alpha < 0,\cos \alpha < 0\)

b) \(\sin \alpha = \frac{{\sqrt {10} }}{4}\)

c) \(\cos \alpha = \frac{{\sqrt 6 }}{4}\)

d) \(\cot \alpha = \frac{{\sqrt {15} }}{5}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

\(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\sin \alpha < 0,\cos \alpha < 0\).

Ta có: \(\cos 2\alpha = - \frac{1}{4} \Rightarrow 1 - 2{\sin ^2}\alpha = - \frac{1}{4} \Rightarrow {\sin ^2}\alpha = \frac{5}{8} \Rightarrow \sin \alpha = - \frac{{\sqrt {10} }}{4}\);

\(\begin{array}{l}\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{{10}}{{16}}} = - \frac{{\sqrt 6 }}{4};\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt {15} }}{3}\\\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{{\sqrt {15} }}{5}\end{array}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(1\).                      
B. \[2\].                    
C. \(3\).                           
D. \[4\].

Lời giải

Chọn D

Đặt \(t = \tan \frac{x}{2} = \frac{1}{2}\) nên \(\sin x = \frac{{2t}}{{1 + {t^2}}} = \frac{{2\frac{1}{2}}}{{1 + \frac{1}{4}}} = \frac{4}{5}\), \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{1}{4}}}{{1 + \frac{1}{4}}} = \frac{3}{5}\).

Vậy \(\frac{{\sin x}}{{2 - 3\cos x}} = \frac{{\frac{4}{5}}}{{2 - \frac{9}{5}}} = 4\).

Lời giải

Cho \(\sin x = \frac{1}{5},\frac{\pi }{2} < x < \pi \). Tính \(\cot 2x\).

\(\begin{array}{l}\frac{\pi }{2} < x < \pi  \Rightarrow \frac{{2\pi }}{2} < 2x < 2\pi  \Rightarrow \pi  < 2x < 2\pi  \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\cos 2x > 0}\\{\tan 2x < 0}\end{array}} \right.\\\cos 2x = 1 - 2{\sin ^2}x = 1 - 2 \cdot \frac{1}{{25}} = \frac{{23}}{{25}}\\\frac{\pi }{2} < x < \pi  \Rightarrow \cos x < 0\\\sin x = \frac{1}{5} \Rightarrow \cos x =  - \sqrt {1 - {{\sin }^2}x}  =  - \frac{{2\sqrt 6 }}{5}.\\\sin 2x = 2\sin x \cdot \cos x = 2 \cdot \frac{1}{5} \cdot \left( { - \frac{{2\sqrt 6 }}{5}} \right) =  - \frac{{4\sqrt 6 }}{5}\\\cot 2x = \frac{{\cos 2x}}{{\sin 2x}} = \frac{{\frac{{23}}{{25}}}}{{ - \frac{{4\sqrt 6 }}{5}}} =  - \frac{{23\sqrt 6 }}{{120}}\end{array}\)

Câu 3

A. \[\sin C = - \sin \left( {A + B} \right).\]                     
B. \[\cos C = \cos \left( {A + B} \right).\]              
C. \[\tan C = \tan \left( {A + B} \right).\]  
D. \[\cot C = - \cot \left( {A + B} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[2\].                      
B. \(3\).                    
C. \(4\).                           
D. \(5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP