Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho biết \(\cos 2\alpha = - \frac{1}{4}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\). Khi đó:
a) \(\sin \alpha < 0,\cos \alpha < 0\)
b) \(\sin \alpha = \frac{{\sqrt {10} }}{4}\)
c) \(\cos \alpha = \frac{{\sqrt 6 }}{4}\)
d) \(\cot \alpha = \frac{{\sqrt {15} }}{5}\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho biết \(\cos 2\alpha = - \frac{1}{4}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\). Khi đó:
a) \(\sin \alpha < 0,\cos \alpha < 0\)
b) \(\sin \alpha = \frac{{\sqrt {10} }}{4}\)
c) \(\cos \alpha = \frac{{\sqrt 6 }}{4}\)
d) \(\cot \alpha = \frac{{\sqrt {15} }}{5}\)
Câu hỏi trong đề: Đề kiểm tra Công thức lượng giác (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\sin \alpha < 0,\cos \alpha < 0\).
Ta có: \(\cos 2\alpha = - \frac{1}{4} \Rightarrow 1 - 2{\sin ^2}\alpha = - \frac{1}{4} \Rightarrow {\sin ^2}\alpha = \frac{5}{8} \Rightarrow \sin \alpha = - \frac{{\sqrt {10} }}{4}\);
\(\begin{array}{l}\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{{10}}{{16}}} = - \frac{{\sqrt 6 }}{4};\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt {15} }}{3}\\\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{{\sqrt {15} }}{5}\end{array}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Đặt \(t = \tan \frac{x}{2} = \frac{1}{2}\) nên \(\sin x = \frac{{2t}}{{1 + {t^2}}} = \frac{{2\frac{1}{2}}}{{1 + \frac{1}{4}}} = \frac{4}{5}\), \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{1}{4}}}{{1 + \frac{1}{4}}} = \frac{3}{5}\).
Vậy \(\frac{{\sin x}}{{2 - 3\cos x}} = \frac{{\frac{4}{5}}}{{2 - \frac{9}{5}}} = 4\).
Lời giải
Cho \(\sin x = \frac{1}{5},\frac{\pi }{2} < x < \pi \). Tính \(\cot 2x\).
\(\begin{array}{l}\frac{\pi }{2} < x < \pi \Rightarrow \frac{{2\pi }}{2} < 2x < 2\pi \Rightarrow \pi < 2x < 2\pi \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\cos 2x > 0}\\{\tan 2x < 0}\end{array}} \right.\\\cos 2x = 1 - 2{\sin ^2}x = 1 - 2 \cdot \frac{1}{{25}} = \frac{{23}}{{25}}\\\frac{\pi }{2} < x < \pi \Rightarrow \cos x < 0\\\sin x = \frac{1}{5} \Rightarrow \cos x = - \sqrt {1 - {{\sin }^2}x} = - \frac{{2\sqrt 6 }}{5}.\\\sin 2x = 2\sin x \cdot \cos x = 2 \cdot \frac{1}{5} \cdot \left( { - \frac{{2\sqrt 6 }}{5}} \right) = - \frac{{4\sqrt 6 }}{5}\\\cot 2x = \frac{{\cos 2x}}{{\sin 2x}} = \frac{{\frac{{23}}{{25}}}}{{ - \frac{{4\sqrt 6 }}{5}}} = - \frac{{23\sqrt 6 }}{{120}}\end{array}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.