Cho các góc \(\alpha ,\beta \) thỏa mãn \(\frac{\pi }{2} < \alpha ,\beta < \pi ,\sin \alpha = \frac{1}{3},\cos \beta = - \frac{2}{3}\).
Tính \(\sin (\alpha + \beta )\).
Cho các góc \(\alpha ,\beta \) thỏa mãn \(\frac{\pi }{2} < \alpha ,\beta < \pi ,\sin \alpha = \frac{1}{3},\cos \beta = - \frac{2}{3}\).
Tính \(\sin (\alpha + \beta )\).
Câu hỏi trong đề: Đề kiểm tra Công thức lượng giác (có lời giải) !!
Quảng cáo
Trả lời:
Do \(\frac{\pi }{2} < \alpha ,\beta < \pi \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\cos \alpha < 0}\\{\sin \beta > 0}\end{array}} \right.\).
Ta có \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3};\sin \beta = \sqrt {1 - {{\cos }^2}\beta } = \sqrt {1 - \frac{4}{9}} = \frac{{\sqrt 5 }}{3}\).
Suy ra \(\sin (\alpha + \beta ) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta = \frac{1}{3} \cdot \left( { - \frac{2}{3}} \right) + \left( { - \frac{{2\sqrt 2 }}{3}} \right) \cdot \frac{{\sqrt 5 }}{3} = - \frac{{2 + 2\sqrt {10} }}{9}\).
Vậy \(\sin (\alpha + \beta ) = - \frac{{2 + 2\sqrt {10} }}{9}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cho \(\sin x = \frac{1}{5},\frac{\pi }{2} < x < \pi \). Tính \(\cot 2x\).
\(\begin{array}{l}\frac{\pi }{2} < x < \pi \Rightarrow \frac{{2\pi }}{2} < 2x < 2\pi \Rightarrow \pi < 2x < 2\pi \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\cos 2x > 0}\\{\tan 2x < 0}\end{array}} \right.\\\cos 2x = 1 - 2{\sin ^2}x = 1 - 2 \cdot \frac{1}{{25}} = \frac{{23}}{{25}}\\\frac{\pi }{2} < x < \pi \Rightarrow \cos x < 0\\\sin x = \frac{1}{5} \Rightarrow \cos x = - \sqrt {1 - {{\sin }^2}x} = - \frac{{2\sqrt 6 }}{5}.\\\sin 2x = 2\sin x \cdot \cos x = 2 \cdot \frac{1}{5} \cdot \left( { - \frac{{2\sqrt 6 }}{5}} \right) = - \frac{{4\sqrt 6 }}{5}\\\cot 2x = \frac{{\cos 2x}}{{\sin 2x}} = \frac{{\frac{{23}}{{25}}}}{{ - \frac{{4\sqrt 6 }}{5}}} = - \frac{{23\sqrt 6 }}{{120}}\end{array}\)
Câu 2
Lời giải
Chọn D
Vì \[A,\,\,B,\,\,C\] là các góc của tam giác \[ABC\] nên \[A + B + C = {180^o} \Rightarrow C = {180^o} - \left( {A + B} \right).\]
Do đó \[C\] và \[\left( {A + B} \right)\] là 2 góc bù nhau.
\[ \Rightarrow \sin C = \sin \left( {A + B} \right);\,\,\cos C = - \cos \left( {a + b} \right);\,\,\tan C = - \tan \left( {A + B} \right);\,\,\cot C = \cot \left( {A + B} \right).\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.