Câu hỏi:

04/10/2025 9 Lưu

Tập xác định của hàm số \(y = - \tan x\) là:

A. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).        
B. \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\).              
C. \(D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\).             
D. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Hàm số \(y =  - \tan x\) xác định khi: \(x \ne \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\).

Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Khi \(t = 5\), ta có: \(h(5) = 75\sin \left( {\frac{{\pi .5}}{8}} \right) \approx 69,3(\;cm)\).

b) Khi \(t = 20\), ta có: \(h(20) = 75\sin \left( {\frac{{\pi  \cdot 20}}{8}} \right) = 75(\;cm)\).

c) d) Ta có: \(\sin \left( {\frac{{\pi t}}{8}} \right) \le 1 \Rightarrow 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\) hay \(h(t) \le 75\).

Giá trị lớn nhất của \(h(t)\) là 75, khi đó \(\sin \left( {\frac{{\pi t}}{8}} \right) = 1 \Rightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi (k \in \mathbb{Z})\) \( \Rightarrow t = 4 + 16k(k \in \mathbb{Z})\). Vì \(t \in [0;30] \Rightarrow t \in \{ 4;20\} \) (ứng với \(k\) bằng 0 và 1).

Vậy tại các thời điểm 4 giây hoặc 20 giây (trong 30 giây đầu tiên) thì cơn sóng đạt chiều cao cực đại (là \(75\;cm\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP