Biểu diễn các góc lượng giác \(\alpha = - \frac{{5\pi }}{6},\beta = \frac{\pi }{3},\gamma = \frac{{25\pi }}{3},\delta = \frac{{17\pi }}{6}\) trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Chọn A
Cách 1: Ta biểu diễn các góc lượng giác \(\alpha = - \frac{{5\pi }}{6},\beta = \frac{\pi }{3},\gamma = \frac{{25\pi }}{3}\), \(\delta = \frac{{17\pi }}{6}\) trên cùng một đường tròn lượng giác, nhận thấy hai góc \(\beta \) và \(\gamma \) có điểm biểu diễn trùng nhau.
\({\rm{\; + \;C\'a ch\;2:\;Ta\;c\'o :\;}}\gamma = \frac{{25\pi }}{3} = \frac{{24\pi }}{3} + \frac{\pi }{3} = 4.2\pi + \frac{\pi }{3} = \beta + 4.2\pi {\rm{.\;}}\)
Do đó, hai góc \(\beta \) và \(\gamma \) có điểm biểu diễn trùng nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Cung có số đo \[\alpha \] rad của đường tròn bán kính \[R\] có độ dài \[l = R.\alpha \].
Lời giải
Theo bài ra ta có: \({\rm{i}} = {50^ \circ },{{\rm{n}}_1} = 1,{{\rm{n}}_2} = 1,33\), thay vào \(\frac{{{\rm{sin}}i}}{{{\rm{sinr}}}} = \frac{{{n_2}}}{{{n_1}}}\) ta được:
\(\begin{array}{*{20}{r}}{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{180}^ \circ } - {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\\{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{144}^ \circ }{{50}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\end{array}\)Mà \({0^ \circ } < r < {90^ \circ }\) nên \(r \approx {35^ \circ }{10^{\rm{'}}}\).
Vậy góc khúc xạ \(r \approx {35^ \circ }{10^{\rm{'}}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.