Nếu \[\alpha \] là góc nhọn và \[\sin \frac{\alpha }{2} = \sqrt {\frac{{x - 1}}{{2x}}} \] thì \[\tan \alpha \] bằng bao nhiêu?
Nếu \[\alpha \] là góc nhọn và \[\sin \frac{\alpha }{2} = \sqrt {\frac{{x - 1}}{{2x}}} \] thì \[\tan \alpha \] bằng bao nhiêu?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Ta có: \[0 < \alpha < {90^0}\]\[ \Leftrightarrow 0 < \frac{\alpha }{2} < {45^0}\]\[ \Rightarrow 0 < \sin \frac{\alpha }{2} < \frac{{\sqrt 2 }}{2}\]\[ \Leftrightarrow 0 < \sqrt {\frac{{x - 1}}{{2x}}} < \frac{{\sqrt 2 }}{2}\]\[ \Leftrightarrow x > 0\]
\[{\sin ^2}\frac{\alpha }{2} + {\cos ^2}\frac{\alpha }{2} = 1\]\[ \Rightarrow \cos \frac{\alpha }{2} = \sqrt {1 - {{\sin }^2}\frac{\alpha }{2}} \], vì \[0 < \frac{\alpha }{2} < {45^0}\]
\[ \Leftrightarrow \cos \frac{\alpha }{2} = \sqrt {\frac{{x + 1}}{{2x}}} \]\[ \Rightarrow \tan \frac{\alpha }{2} = \sqrt {\frac{{x - 1}}{{x + 1}}} \]
\[tan\alpha = \frac{{2\tan \frac{\alpha }{2}}}{{1 - {{\tan }^2}\frac{\alpha }{2}}} = \frac{{2\sqrt {\frac{{x - 1}}{{x + 1}}} }}{{1 - \frac{{x - 1}}{{x + 1}}}} = \sqrt {{x^2} - 1} \].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Phương trình \( \Leftrightarrow \frac{{1 - \cos 4x}}{2} + \frac{{1 + \cos 10x}}{2} = 1\)
\( \Leftrightarrow \cos 10x = \cos 4x \Leftrightarrow \left[ \begin{array}{l}10x = 4x + k2\pi \\10x = - 4x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{3}\\x = \frac{{k\pi }}{7}\end{array} \right.\)
Vậy nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình là: \(x = \frac{\pi }{7},x = - \frac{\pi }{7}\).
Câu 2
Lời giải
Chọn D
Cung có số đo \[\alpha \] rad của đường tròn bán kính \[R\] có độ dài \[l = R.\alpha \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.