Cho vectơ \[\overrightarrow a \]. Mệnh đề nào sau đây đúng?
Câu hỏi trong đề: Đề kiểm tra Các khái niệm mở đầu (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
Cho vectơ \(\overrightarrow a \), có vô số vectơ \(\overrightarrow u \)cùng hướng và cùng độ dài với vectơ \(\overrightarrow a \). Nên có vô số vectơ \[\overrightarrow u \] mà \[\overrightarrow u = \overrightarrow a \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(G\) là trung điểm của \(BE \Rightarrow GM\) là đường trung bình của \(\Delta BCE\) ứng với cạnh đáy \(EC \Rightarrow \left\{ \begin{array}{l}GM = \frac{1}{2}EC = AE\\GM\parallel AE\end{array} \right.\)
Suy ra: Tứ giác \(AGME\) là hình bình hành (vì có hai cạnh đối song song và bằng nhau).
Vì \(N\) là giao điểm hai đường chéo hình bình hành \(AGME\) nên \(N\) là trung điểm của \(AM\).

Do vậy hai vectơ \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) đối nhau.
Lời giải
Theo qui tắc hình bình hành: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Tam giác \(ABD\) đều canh \(a\), nên \(AO = \frac{{a\sqrt 3 }}{2}\)
Vậy \(|\overrightarrow {AB} + \overrightarrow {AD} | = |\overrightarrow {AC} | = AC = 2AO = a\sqrt 3 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.