Cho tam giác \(ABC\) cân tại \(A;M\) là trung điểm của \(BC,H\) là hình chiếu của \(M\) trên \(AC;E\) là trung điểm của \(MH\). Tính \(\overrightarrow {AE} .\overrightarrow {BH} \)
Quảng cáo
Trả lời:
Ta có biến đổi tích vô hướng như sau:

\(2\overrightarrow {AE} \cdot \overrightarrow {BH} = (\overrightarrow {AM} + \overrightarrow {AH} ) \cdot (\overrightarrow {BM} + \overrightarrow {MH} )\)
\( = \overrightarrow {AM} \cdot \overrightarrow {MH} + \overrightarrow {AH} \cdot \overrightarrow {BM} \)
\( = \overrightarrow {AM} \cdot \overrightarrow {MH} + (\overrightarrow {AM} + \overrightarrow {MH} ) \cdot \overrightarrow {BM} \)
\( = \overrightarrow {AM} \cdot \overrightarrow {MH} + \overrightarrow {MH} \cdot \overrightarrow {MC} \)
\( = \overrightarrow {HM} \cdot \overrightarrow {MH} + \overrightarrow {MH} \cdot \overrightarrow {MH} \)
\( = {\overrightarrow {MH} ^2} + {\overrightarrow {MH} ^2} = 0.\)
Suy ra \(AE \bot BH\) (đpcm).
Suy ra \(\overrightarrow {AE} .\overrightarrow {BH} = 0\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Ta có: \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} \).
Vì \(G\) là trọng tâm của tam giác \(ACM\) nên
\(3\overrightarrow {BG} = \overrightarrow {BA} + \overrightarrow {BM} + \overrightarrow {BC} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {BA} + \overrightarrow {BC} = \frac{3}{2}\overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BG} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} .\)
Vì \(ABCD\) là hình chữ nhật nên \(BC = AD = 3a,\overrightarrow {BC} \cdot \overrightarrow {BA} = 0\).
Ta có: \(\overrightarrow {BG} \cdot \overrightarrow {CM} = \left( {\frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA} \cdot \overrightarrow {BC} - \frac{1}{3}{\overrightarrow {BC} ^2}\)
\( = \frac{1}{4}{(4a)^2} - \frac{1}{3} \cdot 4a \cdot 3a - \frac{1}{3}{(3a)^2} = - 3{a^2}.\)
Lời giải
Tam giác \(AMB\) có \(AM = BM = AB\) nên là tam giác đều. Suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
