Cho tứ giác lồi \(ABCD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(H\) và \(K\) lần lượt là trực tâm các tam giác \(ABO\) và \(CDO\). Gọi \(I,J\) lần lượt là trung điểm \(AD\) và \(BC\). Tính \(\overrightarrow {HK} \cdot \overrightarrow {IJ} \)?
Cho tứ giác lồi \(ABCD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(H\) và \(K\) lần lượt là trực tâm các tam giác \(ABO\) và \(CDO\). Gọi \(I,J\) lần lượt là trung điểm \(AD\) và \(BC\). Tính \(\overrightarrow {HK} \cdot \overrightarrow {IJ} \)?
Quảng cáo
Trả lời:

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} }\\{\overrightarrow {IJ} = \overrightarrow {ID} + \overrightarrow {DB} + \overrightarrow {BJ} }\end{array} \Rightarrow 2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {DB} } \right.\).
Suy ra: \(\overrightarrow {HK} \cdot 2\overrightarrow {IJ} = \overrightarrow {HK} (\overrightarrow {AC} + \overrightarrow {DB} ) = \overrightarrow {HK} \cdot \overrightarrow {AC} + \overrightarrow {HK} \cdot \overrightarrow {DB} \)
\( = (\overrightarrow {HB} + \overrightarrow {BD} + \overrightarrow {DK} )\overrightarrow {AC} + (\overrightarrow {HA} + \overrightarrow {AC} + \overrightarrow {CK} )\overrightarrow {DB} = \overrightarrow {AC} (\overrightarrow {BD} + \overrightarrow {DB} ) = \overrightarrow {AC} \cdot \vec 0 = 0\).
Vậy \(\overrightarrow {HK} \cdot \overrightarrow {IJ} = 0\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |

a) Tính \(\overrightarrow {AB} \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {AB} \cdot \overrightarrow {BD} = \overrightarrow {AB} (\overrightarrow {BA} + \overrightarrow {AD} ) = \overrightarrow {AB} \cdot \overrightarrow {BA} + \underbrace {\overrightarrow {AB} \cdot \overrightarrow {AD} }_0\)
\( = \overrightarrow {AB} \cdot \overrightarrow {BA} = - {\overrightarrow {AB} ^2} = - A{B^2} = - 4{a^2}{\rm{. }}\)
b) Tính \(\overrightarrow {BC} \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {BC} \cdot \overrightarrow {BD} = BC \cdot BD \cdot \cos (\overrightarrow {BC} ,\overrightarrow {BD} ) = BC \cdot BD \cdot \cos \widehat {DBC}\)
\( = BC \cdot BD \cdot \cos \widehat {BDA} = BC \cdot BD \cdot \frac{{AD}}{{BD}} = BC \cdot AD = 3{a^3}{\rm{. }}\)
(trong đó \(\widehat {DBC} = \widehat {BDA}\) vì là hai góc so le trong).
c) Tính \(\overrightarrow {AC} \cdot \overrightarrow {BD} \).
Ta có: \(\overrightarrow {AC} \cdot \overrightarrow {BD} = (\overrightarrow {AB} + \overrightarrow {BC} )(\overrightarrow {BA} + \overrightarrow {AD} ) = \overrightarrow {AB} \cdot \overrightarrow {BA} + \overrightarrow {AB} \cdot \overrightarrow {AD} + \overrightarrow {BC} \cdot \overrightarrow {BA} + \overrightarrow {BC} \cdot \overrightarrow {AD} \)
\( = - {\overrightarrow {AB} ^2} + 0 + 0 + BC \cdot AD \cdot \cos {0^0} = - A{B^2} + 3a \cdot a \cdot 1 = - {(2a)^2} + 3{a^2} = - {a^2}.\)
d) Tính \(\overrightarrow {AC} \cdot \overrightarrow {IJ} \). Ta có:
\(\overrightarrow {AC} \cdot \overrightarrow {IJ} = (\overrightarrow {AB} + \overrightarrow {BC} ) \cdot \overrightarrow {IJ} = \underbrace {\overrightarrow {AB} \cdot \overrightarrow {IJ} }_0 + \overrightarrow {BC} \cdot \overrightarrow {IJ} = BC \cdot IJ \cdot \cos {0^0} = 3a \cdot 2a \cdot 1 = 6{a^2}.\)
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |

Độ dài đường chéo hình vuông \(ABCD\) cạnh \(a\) là \(AC = BD = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).
Ta có: \(\overrightarrow {AB} \cdot \overrightarrow {CA} = - \overrightarrow {AB} \cdot \overrightarrow {AC} = - |\overrightarrow {AB} | \cdot |\overrightarrow {AC} | \cdot \cos (\overrightarrow {AB} ,\overrightarrow {AC} )\)
Ta có: \(\overrightarrow {AD} \cdot \overrightarrow {BD} + \overrightarrow {OM} \cdot \overrightarrow {AC} = \overrightarrow {DA} \cdot \overrightarrow {DB} + \frac{1}{2}\overrightarrow {DA} \cdot \overrightarrow {AC} = |\overrightarrow {DA} | \cdot |\overrightarrow {DB} | \cdot \cos (\overrightarrow {DA} ,\overrightarrow {DB} ) - \frac{1}{2}\overrightarrow {AD} \cdot \overrightarrow {AC} \)
Ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (quy tắc hình bình hành).
Do đó: \((\overrightarrow {AB} + \overrightarrow {AD} )(\overrightarrow {BD} + \overrightarrow {BC} ) = \overrightarrow {AC} (\overrightarrow {BD} + \overrightarrow {BC} )\)
(trong đó \(\overrightarrow {AC} \cdot \overrightarrow {BD} = 0\) vì \(\overrightarrow {AC} \bot \overrightarrow {BD} \) ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.