Câu hỏi:

12/10/2025 201 Lưu

Cho tứ giác lồi \(ABCD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(H\) và \(K\) lần lượt là trực tâm các tam giác \(ABO\) và \(CDO\). Gọi \(I,J\) lần lượt là trung điểm \(AD\) và \(BC\). Tính \(\overrightarrow {HK}  \cdot \overrightarrow {IJ} \)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ giác lồi \(ABCD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(H\) và \(K\) lần lượt là trực tâm các tam giác \(ABO\) và \(CDO\). Gọi \(I,J\) lần lượt là trung điểm \(AD\) và \(BC\). Tính \(\overrightarrow { (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AC}  + \overrightarrow {CJ} }\\{\overrightarrow {IJ}  = \overrightarrow {ID}  + \overrightarrow {DB}  + \overrightarrow {BJ} }\end{array} \Rightarrow 2\overrightarrow {IJ}  = \overrightarrow {AC}  + \overrightarrow {DB} } \right.\).

Suy ra: \(\overrightarrow {HK}  \cdot 2\overrightarrow {IJ}  = \overrightarrow {HK} (\overrightarrow {AC}  + \overrightarrow {DB} ) = \overrightarrow {HK}  \cdot \overrightarrow {AC}  + \overrightarrow {HK}  \cdot \overrightarrow {DB} \)

\( = (\overrightarrow {HB}  + \overrightarrow {BD}  + \overrightarrow {DK} )\overrightarrow {AC}  + (\overrightarrow {HA}  + \overrightarrow {AC}  + \overrightarrow {CK} )\overrightarrow {DB}  = \overrightarrow {AC} (\overrightarrow {BD}  + \overrightarrow {DB} ) = \overrightarrow {AC}  \cdot \vec 0 = 0\).

Vậy \(\overrightarrow {HK}  \cdot \overrightarrow {IJ}  = 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 Cho hình thang \(ABCD\) vuông tại \(A\) và \(B\), biết \(AD = a,BC = 3a\) và cạnh \(AB = 2a\). Khi đó:  a) \(\overrightarrow {AB}  (ảnh 1)

a) Tính \(\overrightarrow {AB}  \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {AB}  \cdot \overrightarrow {BD}  = \overrightarrow {AB} (\overrightarrow {BA}  + \overrightarrow {AD} ) = \overrightarrow {AB}  \cdot \overrightarrow {BA}  + \underbrace {\overrightarrow {AB}  \cdot \overrightarrow {AD} }_0\)

\( = \overrightarrow {AB}  \cdot \overrightarrow {BA}  =  - {\overrightarrow {AB} ^2} =  - A{B^2} =  - 4{a^2}{\rm{. }}\)

b) Tính \(\overrightarrow {BC}  \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {BC}  \cdot \overrightarrow {BD}  = BC \cdot BD \cdot \cos (\overrightarrow {BC} ,\overrightarrow {BD} ) = BC \cdot BD \cdot \cos \widehat {DBC}\)

\( = BC \cdot BD \cdot \cos \widehat {BDA} = BC \cdot BD \cdot \frac{{AD}}{{BD}} = BC \cdot AD = 3{a^3}{\rm{. }}\)

(trong đó \(\widehat {DBC} = \widehat {BDA}\) vì là hai góc so le trong).

c) Tính \(\overrightarrow {AC}  \cdot \overrightarrow {BD} \).

Ta có: \(\overrightarrow {AC}  \cdot \overrightarrow {BD}  = (\overrightarrow {AB}  + \overrightarrow {BC} )(\overrightarrow {BA}  + \overrightarrow {AD} ) = \overrightarrow {AB}  \cdot \overrightarrow {BA}  + \overrightarrow {AB}  \cdot \overrightarrow {AD}  + \overrightarrow {BC}  \cdot \overrightarrow {BA}  + \overrightarrow {BC}  \cdot \overrightarrow {AD} \)

\( =  - {\overrightarrow {AB} ^2} + 0 + 0 + BC \cdot AD \cdot \cos {0^0} =  - A{B^2} + 3a \cdot a \cdot 1 =  - {(2a)^2} + 3{a^2} =  - {a^2}.\)

d) Tính \(\overrightarrow {AC}  \cdot \overrightarrow {IJ} \). Ta có:

\(\overrightarrow {AC}  \cdot \overrightarrow {IJ}  = (\overrightarrow {AB}  + \overrightarrow {BC} ) \cdot \overrightarrow {IJ}  = \underbrace {\overrightarrow {AB}  \cdot \overrightarrow {IJ} }_0 + \overrightarrow {BC}  \cdot \overrightarrow {IJ}  = BC \cdot IJ \cdot \cos {0^0} = 3a \cdot 2a \cdot 1 = 6{a^2}.\)

Lời giải

a) Sai

b) Sai

c) Đúng

d) Đúng

 Cho hình vuông \(ABCD\) tâm \(O\), (ảnh 1)

Độ dài đường chéo hình vuông \(ABCD\) cạnh \(a\) là \(AC = BD = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \).

Ta có: \(\overrightarrow {AB}  \cdot \overrightarrow {CA}  =  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - |\overrightarrow {AB} | \cdot |\overrightarrow {AC} | \cdot \cos (\overrightarrow {AB} ,\overrightarrow {AC} )\)

=ABACcosBAC^=aa2cos45°=a2AMAC=|AM||AC|cos(AM,AC)=AMACcosCAM^=a2a2cos45°=a22.

Ta có: \(\overrightarrow {AD}  \cdot \overrightarrow {BD}  + \overrightarrow {OM}  \cdot \overrightarrow {AC}  = \overrightarrow {DA}  \cdot \overrightarrow {DB}  + \frac{1}{2}\overrightarrow {DA}  \cdot \overrightarrow {AC}  = |\overrightarrow {DA} | \cdot |\overrightarrow {DB} | \cdot \cos (\overrightarrow {DA} ,\overrightarrow {DB} ) - \frac{1}{2}\overrightarrow {AD}  \cdot \overrightarrow {AC} \)

=DADBcosADB^12ADACcosCAD^=aa2cos45°12aa2cos45°=a212a2=12a2.

Ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

Do đó: \((\overrightarrow {AB}  + \overrightarrow {AD} )(\overrightarrow {BD}  + \overrightarrow {BC} ) = \overrightarrow {AC} (\overrightarrow {BD}  + \overrightarrow {BC} )\)

=ACBD0+ACBC=CACB=|CA||CB|cosACB^=aa2cos45°=a2

(trong đó \(\overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0\) vì \(\overrightarrow {AC}  \bot \overrightarrow {BD} \) ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP