Câu hỏi:

12/10/2025 141 Lưu

Cho hình chữ nhật \(ABCD\). Kẻ \(BK \bot AC,K \in AC\). Gọi \(M,N\) lần lượt là trung điểm của \(AK\)\(CD\). Tìm số đo góc \(\widehat {BMN}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chữ nhật \(ABCD\). Kẻ \(BK \bot AC,K \in AC\). Gọi \(M,N\) lần lượt là trung điểm của \(AK\) và \(CD\). Tìm số đo góc \(\widehat {BMN}\). (ảnh 1)

Đặt \(\overrightarrow {BA}  = \vec a,\overrightarrow {BC}  = \vec b,\overrightarrow {BK}  = \vec c\) và \(BA = a,BC = b,BK = c\). Khi đó: \(\overrightarrow {BM}  = \frac{1}{2}(\vec a + \vec c),\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN}  =  - \frac{1}{2}(\vec a + \vec c) + \vec b + \frac{1}{2}\vec a = \vec b - \frac{1}{2}\vec c = \frac{1}{2}(2\vec b - \vec c)\).

Do đó: \(\overrightarrow {MN}  \cdot \overrightarrow {BM}  = \frac{1}{4}(2\vec b - \vec c)(\vec a + \vec c) = \frac{1}{4}\left( {2\vec a \cdot \vec b - \vec a \cdot \vec c + 2\vec b \cdot \vec c - {{\vec c}^2}} \right)\)

\( = \frac{1}{4}[2\vec a \cdot \vec b + (\vec b - \vec a)\vec c + (\vec b - \vec c)\vec c]{\rm{. }}\)

Ta thấy rằng: \(\vec a \cdot \vec b = 0\) do \(\vec a \bot \vec b;(\vec b - \vec a)\vec c = \overrightarrow {AC}  \cdot \vec c = 0\)

Do \(AC \bot BK;(\vec b - \vec c)\vec c = \overrightarrow {KC}  \cdot \vec c = 0\) do \(CK \bot BK\).

Vì vậy MNBM=0BMN^=90°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 Cho hình thang \(ABCD\) vuông tại \(A\) và \(B\), biết \(AD = a,BC = 3a\) và cạnh \(AB = 2a\). Khi đó:  a) \(\overrightarrow {AB}  (ảnh 1)

a) Tính \(\overrightarrow {AB}  \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {AB}  \cdot \overrightarrow {BD}  = \overrightarrow {AB} (\overrightarrow {BA}  + \overrightarrow {AD} ) = \overrightarrow {AB}  \cdot \overrightarrow {BA}  + \underbrace {\overrightarrow {AB}  \cdot \overrightarrow {AD} }_0\)

\( = \overrightarrow {AB}  \cdot \overrightarrow {BA}  =  - {\overrightarrow {AB} ^2} =  - A{B^2} =  - 4{a^2}{\rm{. }}\)

b) Tính \(\overrightarrow {BC}  \cdot \overrightarrow {BD} \). Ta có: \(\overrightarrow {BC}  \cdot \overrightarrow {BD}  = BC \cdot BD \cdot \cos (\overrightarrow {BC} ,\overrightarrow {BD} ) = BC \cdot BD \cdot \cos \widehat {DBC}\)

\( = BC \cdot BD \cdot \cos \widehat {BDA} = BC \cdot BD \cdot \frac{{AD}}{{BD}} = BC \cdot AD = 3{a^3}{\rm{. }}\)

(trong đó \(\widehat {DBC} = \widehat {BDA}\) vì là hai góc so le trong).

c) Tính \(\overrightarrow {AC}  \cdot \overrightarrow {BD} \).

Ta có: \(\overrightarrow {AC}  \cdot \overrightarrow {BD}  = (\overrightarrow {AB}  + \overrightarrow {BC} )(\overrightarrow {BA}  + \overrightarrow {AD} ) = \overrightarrow {AB}  \cdot \overrightarrow {BA}  + \overrightarrow {AB}  \cdot \overrightarrow {AD}  + \overrightarrow {BC}  \cdot \overrightarrow {BA}  + \overrightarrow {BC}  \cdot \overrightarrow {AD} \)

\( =  - {\overrightarrow {AB} ^2} + 0 + 0 + BC \cdot AD \cdot \cos {0^0} =  - A{B^2} + 3a \cdot a \cdot 1 =  - {(2a)^2} + 3{a^2} =  - {a^2}.\)

d) Tính \(\overrightarrow {AC}  \cdot \overrightarrow {IJ} \). Ta có:

\(\overrightarrow {AC}  \cdot \overrightarrow {IJ}  = (\overrightarrow {AB}  + \overrightarrow {BC} ) \cdot \overrightarrow {IJ}  = \underbrace {\overrightarrow {AB}  \cdot \overrightarrow {IJ} }_0 + \overrightarrow {BC}  \cdot \overrightarrow {IJ}  = BC \cdot IJ \cdot \cos {0^0} = 3a \cdot 2a \cdot 1 = 6{a^2}.\)

Lời giải

a) Sai

b) Sai

c) Đúng

d) Đúng

 Cho hình vuông \(ABCD\) tâm \(O\), (ảnh 1)

Độ dài đường chéo hình vuông \(ABCD\) cạnh \(a\) là \(AC = BD = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \).

Ta có: \(\overrightarrow {AB}  \cdot \overrightarrow {CA}  =  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - |\overrightarrow {AB} | \cdot |\overrightarrow {AC} | \cdot \cos (\overrightarrow {AB} ,\overrightarrow {AC} )\)

=ABACcosBAC^=aa2cos45°=a2AMAC=|AM||AC|cos(AM,AC)=AMACcosCAM^=a2a2cos45°=a22.

Ta có: \(\overrightarrow {AD}  \cdot \overrightarrow {BD}  + \overrightarrow {OM}  \cdot \overrightarrow {AC}  = \overrightarrow {DA}  \cdot \overrightarrow {DB}  + \frac{1}{2}\overrightarrow {DA}  \cdot \overrightarrow {AC}  = |\overrightarrow {DA} | \cdot |\overrightarrow {DB} | \cdot \cos (\overrightarrow {DA} ,\overrightarrow {DB} ) - \frac{1}{2}\overrightarrow {AD}  \cdot \overrightarrow {AC} \)

=DADBcosADB^12ADACcosCAD^=aa2cos45°12aa2cos45°=a212a2=12a2.

Ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

Do đó: \((\overrightarrow {AB}  + \overrightarrow {AD} )(\overrightarrow {BD}  + \overrightarrow {BC} ) = \overrightarrow {AC} (\overrightarrow {BD}  + \overrightarrow {BC} )\)

=ACBD0+ACBC=CACB=|CA||CB|cosACB^=aa2cos45°=a2

(trong đó \(\overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0\) vì \(\overrightarrow {AC}  \bot \overrightarrow {BD} \) ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP