Câu hỏi:

16/10/2025 35 Lưu

Một vất chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\) (m/s2). Biết rằng vận tốc ban đầu của vật là 2 m/s. Tính vận tốc của vật đó sau 2 giây.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {3{t^2} + t} \right)dt} = {t^3} + \frac{1}{2}{t^2} + C\).

Vì vận tốc ban đầu của vật là 2 m/s nên \(v\left( 0 \right) = 2 \Leftrightarrow C = 2\).

Suy ra \(v\left( t \right) = {t^3} + \frac{1}{2}{t^2} + 2\).

Vậy \(v\left( 2 \right) = {2^3} + \frac{1}{2}{.2^2} + 2 = 12\) m/s.

Trả lời: 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f\left( x \right) = F'\left( x \right) = 1;g\left( x \right) = G'\left( x \right) = \frac{x}{2}\).

Ta có \(H\left( x \right) = \int {f\left( x \right).g\left( x \right)dx} = \int {\frac{x}{2}dx} = \frac{{{x^2}}}{4} + C\).

\(H\left( 4 \right) = 4\) nên \(C = 0\). Do đó \(H\left( x \right) = \frac{{{x^2}}}{4}\).

Suy ra \(H\left( 1 \right) = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Câu 2

A. \({e^{2x}} + 8{x^2} + C\).                                                                     
B. \(2{e^x} + 4{x^2} + C\).                               
C. \(\frac{1}{2}{e^{2x}} + 2{x^2} + C\).                                                                     
D. \(\frac{1}{2}{e^{2x}} + 4{x^2} + C\).

Lời giải

D

Có \(f\left( x \right) = F'\left( x \right) = {e^x} + 4x\)\( \Rightarrow f\left( {2x} \right) = {e^{2x}} + 8x\).

Do đó \(\int {f\left( {2x} \right)dx} = \int {\left( {{e^{2x}} + 8x} \right)dx} = \frac{1}{2}{e^{2x}} + 4{x^2} + C\).

Câu 6

A. \(\left( {0;1} \right)\). 
B. \(\left( { - 1;0} \right)\).                       
C. \(\left( { - 2; - 1} \right)\).                       
D. \(\left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP