Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục hoành và hai đường thẳng \(x = 0\) và \(x = 3\).
Quảng cáo
Trả lời:
Chọn B
Diện tích hình phẳng cần tìm là \(S = \int\limits_0^3 {{e^x}dx} = \left. {{e^x}} \right|_0^3 = {e^3} - 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\int\limits_0^3 {f'\left( x \right)dx} = \int\limits_0^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = {S_A} - {S_B} = 4 - 10 = - 6\).
Lại có \(\int\limits_0^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_0^3 = f\left( 3 \right) - f\left( 0 \right) = - 6 \Rightarrow f\left( 3 \right) = - 6 + f\left( 0 \right) = - 6 + 2 = - 4\).
Trả lời: −4.
Câu 2
A. \(\frac{5}{6}\).
Lời giải
Diện tích phần gạch chéo:
\(S = \int\limits_0^1 {\left| x \right|dx} + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx} + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



