Câu hỏi:

16/10/2025 96 Lưu

Cho hình phẳng được tô màu trong hình bên dưới

Cho hình phẳng được tô màu trong hình bên dưới (ảnh 1)

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).

c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).

d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

Diện tích phần tô màu là \(S = \int\limits_1^2 {\left| {{x^2}} \right|dx}  = \int\limits_1^2 {{x^2}dx}  = \left. {\frac{{{x^3}}}{3}} \right|_1^2 = \frac{{{2^3}}}{3} - \frac{1}{3} = \frac{7}{3}\).

Đáp án: a) Đúng; b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\int\limits_0^3 {f'\left( x \right)dx}  = \int\limits_0^1 {f'\left( x \right)dx}  + \int\limits_1^3 {f'\left( x \right)dx}  = {S_A} - {S_B} = 4 - 10 =  - 6\).

Lại có \(\int\limits_0^3 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_0^3 = f\left( 3 \right) - f\left( 0 \right) =  - 6 \Rightarrow f\left( 3 \right) =  - 6 + f\left( 0 \right) =  - 6 + 2 =  - 4\).

Trả lời: −4.

Câu 2

A. \(\frac{5}{6}\).              

B. \(\frac{{5\pi }}{6}\). 
C. \(\frac{8}{{15}}\).             

 

D. \(\frac{{8\pi }}{{15}}\).

Lời giải

Chọn A

Diện tích phần gạch chéo:

\(S = \int\limits_0^1 {\left| x \right|dx}  + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx}  + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).