Câu hỏi:

16/10/2025 14 Lưu

Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {x + 4} \), trục hoành và trục tung. Biết đường thẳng \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) và chia (H) thành hai phần có diện tích bằng nhau. Tính \(a + b\).

Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \s (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(S\) là diện tích hình (H), suy ra \(S = \int\limits_{ - 4}^0 {\sqrt {x + 4} dx}  = \frac{{16}}{3}\).

Gọi S1 là diện tích hình (H1) giới hạn bởi đường thẳng d, trục tung và trục hoành.

Do \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) suy ra \(b = 8\).

Theo giả thiết \({S_1} = \frac{S}{2} = \frac{8}{3}\) mà \({S_1} = \frac{1}{2}OA.OB \Rightarrow OB = \frac{8}{3} \Rightarrow B\left( { - \frac{8}{3};0} \right)\).

Do \(B \in d \Rightarrow a =  - 6\).

Vậy \(a + b = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \).                                           

B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^5 {f\left( x \right)dx} \).
C. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \).                                                        
D. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^5 {f\left( x \right)dx} \).

Lời giải

Chọn C

Ta có \(S = \int\limits_{ - 1}^1 {\left| {f\left( x \right)} \right|dx}  + \int\limits_1^5 {\left| {f\left( x \right)} \right|dx}  = \int\limits_{ - 1}^1 {f\left( x \right)dx}  - \int\limits_1^5 {f\left( x \right)dx} \).

Câu 2

A. \(\frac{5}{6}\).              

B. \(\frac{{5\pi }}{6}\). 
C. \(\frac{8}{{15}}\).             

 

D. \(\frac{{8\pi }}{{15}}\).

Lời giải

Chọn A

Diện tích phần gạch chéo:

\(S = \int\limits_0^1 {\left| x \right|dx}  + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx}  + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).

Câu 6

Cho hình phẳng được tô màu trong hình bên dưới

Cho hình phẳng được tô màu trong hình bên dưới (ảnh 1)

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).

c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).

d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP