Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\left( {1 \le x \le 4} \right)\) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và x. Thể tích vật thể là bao nhiêu?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\left( {1 \le x \le 4} \right)\) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và x. Thể tích vật thể là bao nhiêu?
Quảng cáo
Trả lời:

Ta có \(V = \int\limits_1^4 {S\left( x \right)dx} = \int\limits_1^4 {3x.xdx} = \int\limits_1^4 {3{x^2}dx} = \left. {{x^3}} \right|_1^4 = 63\).
Trả lời: 63.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \).
Lời giải
Chọn C
Ta có \(S = \int\limits_{ - 1}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^5 {\left| {f\left( x \right)} \right|dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \).
Câu 2
A. \(\frac{5}{6}\).
Lời giải
Diện tích phần gạch chéo:
\(S = \int\limits_0^1 {\left| x \right|dx} + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx} + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.