Câu hỏi:

19/10/2025 110 Lưu

Cho hình chóp \[S.ABCD\], biết \[AB\] cắt \[CD\] tại \[E\], \[AC\] cắt \[BD\] tại \[F\] trong mặt phẳng đáy. Xét tính đúng sai của các khẳng định sau:

a) Đường thẳng \[FE\] nằm trong mặt phẳng \[\left( {ABCD} \right).\]

b) \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right).\]

c) \[SF\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\], \[SE\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right).\]

d) Gọi \[G = FE \cap AD\]. Khi đó, \[SG\] là giao tuyến của mặt phẳng \[\left( {SFE} \right)\] và mặt phẳng \[\left( {SAD} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ

b) Đ

c) S

d) Đ

 

cắt \[CD\] tại \[E\], \[AC\] cắt \[BD\] tại \[F\] trong mặt phẳng đáy.  Xét tính đúng sai của các khẳng định sau: (ảnh 1)

a) Ta có: \[E = AB \cap CD\] \[ \Rightarrow E \in AB,AB \subset \left( {ABCD} \right)\] \[ \Rightarrow E \in \left( {ABCD} \right).\]

Tương tự: \[F = AC \cap BD\]\[ \Rightarrow F \in AC,AC \subset \left( {ABCD} \right)\]\[ \Rightarrow F \in \left( {ABCD} \right).\]

Do đó, \[FE \subset \left( {ABCD} \right).\]

b) Dễ thấy \[\left\{ \begin{array}{l}A \in \left( {SAB} \right) \cap \left( {ABCD} \right)\\B \in \left( {SAB} \right) \cap \left( {ABCD} \right)\end{array} \right.\]\[ \Rightarrow AB = \left( {SAB} \right) \cap \left( {ABCD} \right)\].

Vậy \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right).\]

c) Ta có: \[\left\{ \begin{array}{l}E \in \left( {SAB} \right) \cap \left( {SCD} \right)\\S \in \left( {SAB} \right) \cap \left( {SCD} \right)\end{array} \right.\]\[ \Rightarrow SE = \left( {SAB} \right) \cap \left( {SCD} \right).\]

               \[\left\{ \begin{array}{l}F \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right.\]\[ \Rightarrow SF = \left( {SAC} \right) \cap \left( {SBD} \right).\]

Do đó, \[SE\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\], \[SF\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right).\]

d) Ta có: \[\left\{ \begin{array}{l}G \in FE,{\rm{ }}FE \subset \left( {SEF} \right)\\G \in AD,AD \subset \left( {SAD} \right)\end{array} \right.\] \[ \Rightarrow G \in \left( {SEF} \right) \cap \left( {SAD} \right).\]

Mà \[S \in \left( {SEF} \right) \cap \left( {SAD} \right).\]

Vậy \[SG = \left( {SEF} \right) \cap \left( {SAD} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: 2

Gọi \[O\] là tâm hình bình hành \[ABCD.\]

Ta có: \[I = AM \cap \left( {SBD} \right) = AM \cap SO.\]

Xét tam giác \[SAC\], có \[AM\] và \[SO\] là hai đường trung tuyến của tam giác.

Mà \[AM \cap SO = I\] nên \[I\] là trọng tâm của tam giác \[SAC\].

Do đó, \[\frac{{IA}}{{IM}} = 2.\]

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\]. (ảnh 1)

Lời giải

Hướng dẫn giải

a) Đ

b) Đ

c) S

d) S

 

Chiều cao của sóng tại thời điểm 5 giây là \[h\left( 5 \right) = 75\sin \left( {\frac{{\pi .5}}{8}} \right) \approx 69,3{\rm{ }}\left( {cm} \right).\]

Chiều cao của sóng tại thời điểm 20 giây là \[h\left( {20} \right) = 75\sin \left( {\frac{{\pi .20}}{8}} \right) = 75{\rm{ }}\left( {cm} \right).\]

Ta thấy \[ - 75 \le 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\].

Sóng đạt chiều cao lớn nhất là \[75{\rm{ }}\left( m \right)\] khi \[\sin \left( {\frac{{\pi t}}{8}} \right) = 1\]\[ \Leftrightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \]\[ \Leftrightarrow t = 4 + 16k.\]

Có \[0 \le t = 4 + 16k \le 30\]\[ \Leftrightarrow - \frac{1}{4} \le k \le \frac{{26}}{{16}}\].

Mà \[k \in \mathbb{Z}\] nên \[k = 0,k = 1\] và khi đó \[t = 4\], \[t = 20\] giây.

Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), các thời điểm để sóng đạt chiều cao lớn nhất là 4 giây và 20 giây.

Câu 6

A. \[y = \sin x.\]      

B. \[y = \cos x.\]              
C. \[y = \tan x.\]                          
D. \[y = \cot x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 300^\circ .\] 

B. \[510^\circ .\]             
C. \[60^\circ .\]                             
D. \[ - 420^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP