PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Một chất điểm dao động điều hòa theo phương trình \(x = 2\cos \left( {2\pi t + \frac{\pi }{2}} \right)\), \(t\) tính bằng giây và \(x\) tính bằng \({\rm{cm}}\). Gọi \({t_0}\) là thời điểm đầu tiên vật có li độ lớn nhất (li độ là khoảng cách từ vật đến vị trí cân bằng). Giá trị của \({t_0}\) bằng (làm tròn kết quả đến hàng phần trăm) bao nhiêu giây?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Một chất điểm dao động điều hòa theo phương trình \(x = 2\cos \left( {2\pi t + \frac{\pi }{2}} \right)\), \(t\) tính bằng giây và \(x\) tính bằng \({\rm{cm}}\). Gọi \({t_0}\) là thời điểm đầu tiên vật có li độ lớn nhất (li độ là khoảng cách từ vật đến vị trí cân bằng). Giá trị của \({t_0}\) bằng (làm tròn kết quả đến hàng phần trăm) bao nhiêu giây?
Quảng cáo
Trả lời:

Trả lời: 0,75
Với mọi \(t \ge 0\), ta có \( - 1 \le \cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 1\)\( \Leftrightarrow - 2 \le 2\cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 2\).
Do đó li độ lớn nhất là \(x = 2\) cm xảy ra khi \(\cos \left( {2\pi t + \frac{\pi }{2}} \right) = 1\)\( \Leftrightarrow 2\pi t + \frac{\pi }{2} = k2\pi \)\[ \Leftrightarrow t = k - \frac{1}{4},k \in \mathbb{Z}\].
Vì \(t \ge 0\) nên \(k - \frac{1}{4} \ge 0 \Leftrightarrow k \ge \frac{1}{4}\).
Vì \(k \in \mathbb{Z}\), suy ra thời điểm đầu tiên thỏa mãn ứng với \(k = 1\). Suy ra \({t_0} = \frac{3}{4} = 0,75\) giây.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 17
Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).
Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.
Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).
Theo yêu cầu bài toán:
\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).
Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.
Lời giải
Trả lời: 2
Trong mặt phẳng \(\left( {ABCD} \right)\):
Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).
Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).
Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).
Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).
Mặt khác \(P\) là trọng tâm tam giác \(SAG\).
Suy ra \(\frac{{GP}}{{PE}} = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.