Câu hỏi:

20/10/2025 8 Lưu

Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} + \sqrt {2x + 7} - 5}}{{2x - 2}}\) kết quả làm tròn đến hàng phần trăm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 0,29

\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} + \sqrt {2x + 7} - 5}}{{2x - 2}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2 + \sqrt {2x + 7} - 3}}{{2x - 2}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2}}{{2x - 2}} + \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 7} - 3}}{{2x - 2}}\)

\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x + 3} \right) - 4}}{{\left( {2x - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}} + \mathop {\lim }\limits_{x \to 1} \frac{{\left( {2x + 7} \right) - 9}}{{\left( {2x - 2} \right)\left( {\sqrt {2x + 7} + 3} \right)}}\]

\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{2\left( {\sqrt {x + 3} + 2} \right)}} + \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {2x + 7} + 3}}\]\[ = \frac{1}{8} + \frac{1}{6}\]\[ = \frac{7}{{24}} \approx 0,29\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 17

Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).

Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.

Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).

Theo yêu cầu bài toán:

\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).

Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.

Lời giải

Trả lời: 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\):

Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).

Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).

Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).

Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).

Mặt khác \(P\) là trọng tâm tam giác \(SAG\).

Suy ra \(\frac{{GP}}{{PE}} = 2\).

Câu 5

A. \({u_1} = - 5\).   
B. \({u_2} = - 10\).     
C. \({u_3} = - 15\).                                     
D. \({u_4} = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - \infty ;0} \right)\).             
B. \(\left[ { - 1;1} \right]\).                      
C. \(\left( { - 1;1} \right)\).                      
D. \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP