Câu hỏi:

20/10/2025 412 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Gọi \(E,F,G\) lần lượt là trung điểm của cạnh \(SA,AB,CD\). Gọi \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\). Tính tỉ số \(\frac{{GP}}{{PE}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\):

Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).

Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).

Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).

Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).

Mặt khác \(P\) là trọng tâm tam giác \(SAG\).

Suy ra \(\frac{{GP}}{{PE}} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 17

Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).

Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.

Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).

Theo yêu cầu bài toán:

\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).

Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.

Lời giải

a) Đ, b) Đ, c) Đ, d) Đ

Độ cận thị (D)

\([0,25;0,75)\)

\([0,75;1,25)\)

\([1,25;1,75)\)

\([1,75;2,25)\)

\([2,25;2,75)\)

Giá trị đại diện

0,5

1

1,5

2

2,5

Số học sinh

25

32

14

12

4

 

a) Số trung bình của mẫu số liệu trên là \(\frac{{0,5.25 + 1.32 + 1,5.14 + 2.12 + 2,5.4}}{{87}} \approx 1,14\).

b) Ta thấy nhóm \([0,75;1,25)\) có tần số lớn nhất (\(n = 32\)) nên nhóm chứa mốt của số liệu là \([0,75;1,25)\).

c) Mốt của mẫu số liệu là \({M_0} = 0,75 + \frac{{32 - 25}}{{(32 - 25) + (32 - 14)}}(1,25 - 0,75) = 0,89\).

d) Gọi \({x_1},{x_2}, \ldots {x_{87}}\) lần lượt là độ cận của các học sinh sắp xếp theo thứ tự không giảm.

Trung vị của mẫu là \({x_{44}} \in [0,75;1,25)\).

Nên: \({M_e} = 0,75 + \frac{{\frac{{87}}{2} - 25}}{{32}}(1,25 - 0,75) \approx 1,039\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP