Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Gọi \(E,F,G\) lần lượt là trung điểm của cạnh \(SA,AB,CD\). Gọi \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\). Tính tỉ số \(\frac{{GP}}{{PE}}\).
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Gọi \(E,F,G\) lần lượt là trung điểm của cạnh \(SA,AB,CD\). Gọi \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\). Tính tỉ số \(\frac{{GP}}{{PE}}\).
Quảng cáo
Trả lời:
Trả lời: 2

Trong mặt phẳng \(\left( {ABCD} \right)\):
Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).
Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).
Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).
Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).
Mặt khác \(P\) là trọng tâm tam giác \(SAG\).
Suy ra \(\frac{{GP}}{{PE}} = 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 17
Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).
Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.
Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).
Theo yêu cầu bài toán:
\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).
Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.
Lời giải
a) Đ, b) Đ, c) Đ, d) Đ
|
Độ cận thị (D) |
\([0,25;0,75)\) |
\([0,75;1,25)\) |
\([1,25;1,75)\) |
\([1,75;2,25)\) |
\([2,25;2,75)\) |
|
Giá trị đại diện |
0,5 |
1 |
1,5 |
2 |
2,5 |
|
Số học sinh |
25 |
32 |
14 |
12 |
4 |
a) Số trung bình của mẫu số liệu trên là \(\frac{{0,5.25 + 1.32 + 1,5.14 + 2.12 + 2,5.4}}{{87}} \approx 1,14\).
b) Ta thấy nhóm \([0,75;1,25)\) có tần số lớn nhất (\(n = 32\)) nên nhóm chứa mốt của số liệu là \([0,75;1,25)\).
c) Mốt của mẫu số liệu là \({M_0} = 0,75 + \frac{{32 - 25}}{{(32 - 25) + (32 - 14)}}(1,25 - 0,75) = 0,89\).
d) Gọi \({x_1},{x_2}, \ldots {x_{87}}\) lần lượt là độ cận của các học sinh sắp xếp theo thứ tự không giảm.
Trung vị của mẫu là \({x_{44}} \in [0,75;1,25)\).
Nên: \({M_e} = 0,75 + \frac{{\frac{{87}}{2} - 25}}{{32}}(1,25 - 0,75) \approx 1,039\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
