Câu hỏi:

20/10/2025 16 Lưu

Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối các trung điểm của bốn cạnh hình vuông \(ABCD\), ta được hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh hình vuông thứ hai, ta được hình vuông thứ ba. Tiếp tục như thế ta nhận được một dãy các hình vuông. Tìm tổng chu vi của dãy các hình vuông đó (kết quả làm tròn đến hàng phần mười).

Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 13,7

Nếu cạnh hình vuông ban đầu là \(x\) thì theo định lí Pythagore, ta có cạnh hình vuông thứ hai là \(\sqrt {{{\left( {\frac{x}{2}} \right)}^2} + {{\left( {\frac{x}{2}} \right)}^2}} = \frac{{x\sqrt 2 }}{2}.(*)\)

Gọi cạnh hình vuông \(ABCD\)\({u_1} = 1\), từ \({\rm{(}}*{\rm{)}}\) ta có cạnh hình vuông thứ hai là \({u_2} = \frac{{\sqrt 2 }}{2}\), cạnh hình vuông thứ ba là \({u_3} = \frac{1}{2}\), cạnh hình vuông thứ tư là \({u_4} = \frac{{\sqrt 2 }}{4}, \ldots \)

Xét tổng chu vi dãy các hình vuông là:

\(S = 4{u_1} + 4{u_2} + 4{u_3} + \ldots = 4\left( {1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots } \right).\)

Dễ thấy \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots \) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng 1, công bội bằng \(\frac{{\sqrt 2 }}{2}\).

Vậy ta có: \(S = 4 \cdot \frac{{{u_1}}}{{1 - q}} = 4 \cdot \frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 8 + 4\sqrt 2 \approx 13,7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 17

Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).

Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.

Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).

Theo yêu cầu bài toán:

\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).

Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.

Lời giải

Trả lời: 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\):

Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).

Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).

Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).

Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).

Mặt khác \(P\) là trọng tâm tam giác \(SAG\).

Suy ra \(\frac{{GP}}{{PE}} = 2\).

Câu 3

A. \({u_1} = - 5\).   
B. \({u_2} = - 10\).     
C. \({u_3} = - 15\).                                     
D. \({u_4} = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( + \infty .\)       
B. \( - \infty .\)        
C. \(\frac{4}{3}.\)                                             
D. \(1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP