Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối các trung điểm của bốn cạnh hình vuông \(ABCD\), ta được hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh hình vuông thứ hai, ta được hình vuông thứ ba. Tiếp tục như thế ta nhận được một dãy các hình vuông. Tìm tổng chu vi của dãy các hình vuông đó (kết quả làm tròn đến hàng phần mười).

Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối các trung điểm của bốn cạnh hình vuông \(ABCD\), ta được hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh hình vuông thứ hai, ta được hình vuông thứ ba. Tiếp tục như thế ta nhận được một dãy các hình vuông. Tìm tổng chu vi của dãy các hình vuông đó (kết quả làm tròn đến hàng phần mười).

Quảng cáo
Trả lời:
Trả lời: 13,7
Nếu cạnh hình vuông ban đầu là \(x\) thì theo định lí Pythagore, ta có cạnh hình vuông thứ hai là \(\sqrt {{{\left( {\frac{x}{2}} \right)}^2} + {{\left( {\frac{x}{2}} \right)}^2}} = \frac{{x\sqrt 2 }}{2}.(*)\)
Gọi cạnh hình vuông \(ABCD\) là \({u_1} = 1\), từ \({\rm{(}}*{\rm{)}}\) ta có cạnh hình vuông thứ hai là \({u_2} = \frac{{\sqrt 2 }}{2}\), cạnh hình vuông thứ ba là \({u_3} = \frac{1}{2}\), cạnh hình vuông thứ tư là \({u_4} = \frac{{\sqrt 2 }}{4}, \ldots \)
Xét tổng chu vi dãy các hình vuông là:
\(S = 4{u_1} + 4{u_2} + 4{u_3} + \ldots = 4\left( {1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots } \right).\)
Dễ thấy \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots \) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng 1, công bội bằng \(\frac{{\sqrt 2 }}{2}\).
Vậy ta có: \(S = 4 \cdot \frac{{{u_1}}}{{1 - q}} = 4 \cdot \frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 8 + 4\sqrt 2 \approx 13,7\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 17
Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).
Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.
Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).
Theo yêu cầu bài toán:
\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).
Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.
Lời giải
a) Đ, b) Đ, c) Đ, d) Đ
|
Độ cận thị (D) |
\([0,25;0,75)\) |
\([0,75;1,25)\) |
\([1,25;1,75)\) |
\([1,75;2,25)\) |
\([2,25;2,75)\) |
|
Giá trị đại diện |
0,5 |
1 |
1,5 |
2 |
2,5 |
|
Số học sinh |
25 |
32 |
14 |
12 |
4 |
a) Số trung bình của mẫu số liệu trên là \(\frac{{0,5.25 + 1.32 + 1,5.14 + 2.12 + 2,5.4}}{{87}} \approx 1,14\).
b) Ta thấy nhóm \([0,75;1,25)\) có tần số lớn nhất (\(n = 32\)) nên nhóm chứa mốt của số liệu là \([0,75;1,25)\).
c) Mốt của mẫu số liệu là \({M_0} = 0,75 + \frac{{32 - 25}}{{(32 - 25) + (32 - 14)}}(1,25 - 0,75) = 0,89\).
d) Gọi \({x_1},{x_2}, \ldots {x_{87}}\) lần lượt là độ cận của các học sinh sắp xếp theo thứ tự không giảm.
Trung vị của mẫu là \({x_{44}} \in [0,75;1,25)\).
Nên: \({M_e} = 0,75 + \frac{{\frac{{87}}{2} - 25}}{{32}}(1,25 - 0,75) \approx 1,039\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.