PHẦN II. TỰ LUẬN
Một hộ nông dân dự định trồng cây đào và cây bưởi trên diện tích 4 ha. Trên diện tích mỗi ha, nếu trồng đào thì cần 10 công và thu 2 triệu đồng, nếu trồng bưởi thì cần 15 công và thu 2,5 triệu đồng. Số tiền nhiều nhất mà hộ nông dân thu được là bao nhiêu triệu đồng, biết rằng tổng số công không quá 45 công?
PHẦN II. TỰ LUẬN
Một hộ nông dân dự định trồng cây đào và cây bưởi trên diện tích 4 ha. Trên diện tích mỗi ha, nếu trồng đào thì cần 10 công và thu 2 triệu đồng, nếu trồng bưởi thì cần 15 công và thu 2,5 triệu đồng. Số tiền nhiều nhất mà hộ nông dân thu được là bao nhiêu triệu đồng, biết rằng tổng số công không quá 45 công?
Quảng cáo
Trả lời:
Gọi \(x,y\left( {x,y \ge 0} \right)\) lần lượt là diện tích trồng đào và diện tích trồng bưởi mà hộ nông dân trồng.
Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).
Số tiền thu được là \(F = 2x + 2,5y\) (triệu đồng).
Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F = 2x + 2,5y\) trên miền nghiệm của hệ bất phương trình trên.

Miền nghiệm của hệ bất phương trình là tứ giác OABC kể cạnh của tứ giác (phần gạch chéo) với \(O\left( {0;0} \right),A\left( {0;3} \right),B\left( {3;1} \right),C\left( {4;0} \right)\).
Ta có \(O\left( {0;0} \right)\) thì \(F = 0\).
Ta có \(A\left( {0;3} \right)\) thì \(F = 7,5\).
Ta có \(B\left( {3;1} \right)\) thì \(F = 8,5\).
Ta có \(C\left( {4;0} \right)\) thì F = 8.
Do đó để số tiền thu được lớn nhất là 8,5 triệu đồng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số gam đường cần để pha \(x\) lít nước cam loại I là \(20x\) gam.
Số gam đường cần để pha \(y\) lít nước cam loại II là \(60y\) gam.
Vì An chỉ có thể dùng không quá 200 gam đường nên ta có bất phương trình \(20x + 60y \le 200\)\( \Leftrightarrow x + 3y \le 10\).
Suy ra \(a = 1;b = - 3\).
Do đó \(2{a^2} + 100b = {2.1^2} + 100.\left( { - 3} \right) = - 298\).
Trả lời: −298.
Lời giải

Gọi N là trung điểm của BC.
Ta có \(\overrightarrow {GM} = \frac{1}{2}\left( {\overrightarrow {GA} + \overrightarrow {GD} } \right)\)\( = \frac{1}{2}\overrightarrow {GA} + \frac{1}{2}\overrightarrow {GD} \)\( = - \frac{1}{2}.\frac{2}{3}\overrightarrow {AN} + \frac{1}{2}.\frac{2}{3}\overrightarrow {BD} \)\( = - \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)
\( = \frac{2}{3}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BC} \).
Suy ra \(m = 2;n = 1\). Do đó \(m + n = 3\).
Trả lời: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.