Câu hỏi:

28/10/2025 62 Lưu

Hai bạn An và Bình cùng xuất phát từ điểm , đi theo hai hướng khác nhau và tạo với nhau một góc \(40^\circ \) để đến đích là điểm \[D\], góc \[PAD\] bằng \(100^\circ \). Biết rằng họ dừng lại để ăn trưa lần lượt tại \[A\] và \[B\] (như hình vẽ minh hoạ).

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (làm tròn đến 1 chữ số sau dấu thập phân)? (ảnh 1)
Hỏi bạn Bình phải đi bao xa nữa để đến được đích (làm tròn đến 1 chữ số sau dấu thập phân)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời

3

,

5

 

 Xét tam giác \[PAD\] có \[PD = \sqrt {P{A^2} + A{D^2} - 2.PA.AD.\cos \widehat {PAD}}  = \sqrt {{8^2} + {3^2} - 2.8.3.\cos 100^\circ }  \approx 9(km).\]

Và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2.PA.PD}} = \frac{{{8^2} + {9^2} - {3^2}}}{{2.8.9}} = \frac{{17}}{{18}}\] suy ra \[\widehat {APD} \approx 19^\circ \].

Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} = 40^\circ  - 19^\circ  = 21^\circ \]

Và \[BD = \sqrt {P{B^2} + P{D^2} - 2.PB.PD.\cos \widehat {BPD}} \] \[ = \sqrt {{7^2} + {9^2} - 2.7.9.\cos 21^\circ }  \approx 3,5\] (km).

Vậy bạn Bình phải đi khoảng \[3,5\] km nữa để đến đích.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(a,b,c\) theo thứ tự là số học sinh chỉ thích Văn, Toán, Anh.

Khối 10 của một trường THPT có 440 em học sinh, trong đó có 250 em thích môn Văn, 210 em thích môn Toán, 240 em thích môn Anh, 65 em không thích môn nào, 75 em thích cả ba môn. Hỏi số em chỉ thích một trong ba môn trên là bao nhiêu? (ảnh 1)

\(x\)là số học sinh chỉ thích hai môn Văn, Toán.\(y\)

là số học sinh chỉ thích hai môn Anh, Toán.

\(z\)là số học sinh chỉ thích hai môn Văn, Anh.

Điều kiện \(a,b,c,x,y,z, \in \mathbb{N}\).

Số học sinh thích ít nhất một trong ba môn là

\(440 - 65 = 375{\rm{(em)}}{\rm{. }}\)

Ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{l}}{a + x + z + 75 = 250 &  & \left( 1 \right)}\\{b + x + y + 75 = 210 &  & \left( 2 \right)}\\{c + y + z + 75 = 240 &  & \left( 3 \right)}\\{a + b + c + x + y + z + 75 = 375 & \left( 4 \right)}\end{array}} \right.\]

Cộng (1), (2), (3) vế theo vế ta được \(a + b + c + 2(x + y + z) = 475\) (5)

Từ (4), (5) suy ra \(a + b + c = 125\).

Vậy có 125 em chỉ thích một trong ba môn trên.

Lời giải

Ta có \(\widehat {ACB} = \widehat {CBH} - \widehat {CAH} = {57^^\circ } - {47^^\circ } = {10^^\circ }\).

Áp dụng định lí sin ta có

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAH}}} \Rightarrow BC = \frac{{AB\sin \widehat {CAH}}}{{\sin \widehat {ACB}}} = \frac{{63\sin {{47}^^\circ }}}{{\sin {{10}^^\circ }}}\)

Suy ra \(CH = BC\sin \widehat {CBH} = \frac{{63\sin {{47}^^\circ }\sin {{57}^^\circ }}}{{\sin {{10}^^\circ }}} \approx 222,5m\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\cos \left( {90^\circ  + \alpha } \right) =  - \sin \alpha \].

B. \[\tan \left( {90^\circ  + \alpha } \right) = \cot \alpha \].

C. \[\sin \left( {90^\circ  + \alpha } \right) =  - \cos \alpha \].     
D. \[\cot \left( {90^\circ  + \alpha } \right) = \tan \alpha \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP