Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. \(3x + 2y \ge 0.\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Bất phương trình bậc nhất hai ẩn là \(3x + 2y \ge 0.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y < - 6\end{array} \right.\].
B. \[\left\{ \begin{array}{l}x > 0\\3x + 2y < 6\end{array} \right.\].
Lời giải
Đáp án đúng là: C
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(y = 0\) và đường thẳng \(3x + 2y = 6\).
Miền nghiệm gồm phần y nhận giá trị không âm.
Lại có \(O\left( {0;0} \right)\) thỏa mãn bất phương trình \(3x + 2y < 6\).
Vậy miền không gạch biểu diễn miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y \le 6\end{array} \right.\].
Lời giải
Trả lời: −1.\(P = \frac{{\sin \alpha + 2\cos \alpha }}{{\cos \alpha + 2\sin \alpha }}\)
Ta có \( = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} + 2}}{{1 + 2\frac{{\sin \alpha }}{{\cos \alpha }}}}\)\( = \frac{{\tan \alpha + 2}}{{1 + 2\tan \alpha }} = \frac{{ - 1 + 2}}{{1 + 2.\left( { - 1} \right)}} = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





