Bạn Nam tiết kiệm được 450 nghìn đồng. Trong đợt ủng hộ các bạn học sinh đồng bào miền Trung bị lũ lụt vừa qua, bạn Nam đã ủng hộ \(x\) tờ tiền loại 20 nghìn đồng, \(y\)tờ tiền loại 10 nghìn đồng. Khi đó bất phương trình biểu diễn tổng số tiền mà bạn Nam đã ủng hộ có dạng \(ax + by \le c\). Tính giá trị của biểu thức \(P = c - 2a - b\).
Bạn Nam tiết kiệm được 450 nghìn đồng. Trong đợt ủng hộ các bạn học sinh đồng bào miền Trung bị lũ lụt vừa qua, bạn Nam đã ủng hộ \(x\) tờ tiền loại 20 nghìn đồng, \(y\)tờ tiền loại 10 nghìn đồng. Khi đó bất phương trình biểu diễn tổng số tiền mà bạn Nam đã ủng hộ có dạng \(ax + by \le c\). Tính giá trị của biểu thức \(P = c - 2a - b\).
Quảng cáo
Trả lời:
Trả lời: 400
Số tiền 20 nghìn đồng bạn Nam đã ủng hộ là: \(20x\) (nghìn đồng).
Số tiền 10 nghìn đồng bạn Nam đã ủng hộ là: \(10y\) (nghìn đồng).
Theo đề ta có: \(20x + 10y \le 450\).
Suy ra \(a = 20;b = 10;c = 450\). Do đó \(P = 450 - 2.20 - 10 = 400\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y < - 6\end{array} \right.\].
B. \[\left\{ \begin{array}{l}x > 0\\3x + 2y < 6\end{array} \right.\].
Lời giải
Đáp án đúng là: C
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(y = 0\) và đường thẳng \(3x + 2y = 6\).
Miền nghiệm gồm phần y nhận giá trị không âm.
Lại có \(O\left( {0;0} \right)\) thỏa mãn bất phương trình \(3x + 2y < 6\).
Vậy miền không gạch biểu diễn miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y \le 6\end{array} \right.\].
Lời giải
Trả lời: 125.
Gọi \(x;y\) lần lượt là số radio kiểu 1 và kiểu hai sản xuất được trong 1 ngày.
Ta có \(0 \le x \le 45;0 \le y \le 80\).
Số linh kiện cần để sản xuất \(x\)radio kiểu 1 là \(12x\), số linh kiện cần để sản xuất \(y\)radio kiểu 2 là \(9y\).
Tổng số linh kiện là: \(12x + 9y\).
Theo đề ta có: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\) (I).
Số tiền lãi thu được là \(F\left( {x;y} \right) = 250000x + 180000y\).
Bài toán trở thành tìm \(x,y\) là nghiệm của hệ bất phương trình (I) để \(F\left( {x;y} \right) = 250000x + 180000y\) đạt giá trị lớn nhất.
Miền nghiệm của hệ bất phương trình (I) là ngũ giác OABCD (miền tô màu) như hình vẽ.

Khi đó \(F\left( {x;y} \right)\) đạt giá trị lớn nhất khi \(\left( {x;y} \right)\) là một trong các điểm sau:
\(O\left( {0;0} \right),A\left( {0;80} \right),B\left( {15;80} \right),C\left( {45;40} \right),D\left( {45;0} \right)\).
Có \(F\left( {0;0} \right) = 0;\)\(F\left( {0;80} \right) = 250000.0 + 180000.80 = 14400000\);
\(F\left( {15;80} \right) = 250000.15 + 180000.80 = 18150000\); \(F\left( {45;40} \right) = 250000.45 + 180000.40 = 18450000\);
\(F\left( {45;0} \right) = 250000.45 + 180000.0 = 11250000\).
Tiền lãi thu được nhiều nhất là \(18450000\) đồng khi \({x_0} = 45;{y_0} = 40\).
\(T = {x_0} + 2{y_0} = 45 + 2.40 = 125\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





