Câu hỏi:

31/10/2025 137 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn.Thí sinh trả lời câu 1 đến câu 6.

Tìm giá trị nhỏ nhất \({F_{\min }}\) của biểu thức \(F = x - 2y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 1 \ge 0\\x + y \le 2\\x - 2y \le 2\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: −7

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 1 \ge 0\\x + y \le 2\\x - 2y \le 2\end{array} \right.\) ta được miền tam giác \(ABC\) (kể cả bờ).

Tìm giá trị nhỏ nhất Fmin  của biểu thức F = x - 2y trên miền nghiệm của hệ bất phương trình x + 1 >= 0; x + y =< 2; x - 2y =< 2 . (ảnh 1)

Xác định được \(A\left( { - 1;3} \right),B\left( { - 1; - \frac{3}{2}} \right),C\left( {2;0} \right)\).

Lần lượt thay tọa độ \(A,B,C\) vào biểu thức \(F = x - 2y\) ta được \({F_A} =  - 7;{F_B} = 2;{F_C} = 2\).

Vậy \({F_{\min }} =  - 7\) khi \(x =  - 1;y = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AC} \).

B. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  - \frac{5}{6}\overrightarrow {AC} \).

C. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).  
D. \(\overrightarrow {AN}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho tam giác ABC. Lấy điểm N thuộc cạnh BC sao cho NB= 5/6 BC. Hãy phân tích vecto AN theo các vectơ AB và vec AC. (ảnh 1)

Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN}  = \frac{1}{6}\overrightarrow {CB} \).

Ta có \(\overrightarrow {AN}  = \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {AC}  + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC}  + \frac{1}{6}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Câu 2

A. \(7.\)  

B. \(129.\)  
C. \(49.\) 
D. \(\sqrt {129} \).

Lời giải

Đáp án đúng là: A

Ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos B = {8^2} + {5^2} - 2.8.5.\cos 60^\circ  = 49 \Rightarrow b = 7\).

Câu 3

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Trong các câu sau có bao nhiêu câu là mệnh đề:

(1): Số 3 là một số chẵn.

(2): \(2x + 1 = 3\).

(3): Các em hãy cố gắng làm bài thi cho tốt.

(4): \(1 < 3 \Rightarrow 4 < 2\).

A. 2.  

B. 3. 
C. 1. 
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{\sqrt 3 }}{2}\). 

B. \(\sqrt 3 \). 
C. \(\frac{{\sqrt 3 }}{3}\). 
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {AM} \). 

B. \(\overrightarrow {MN} \). 
C. \(\overrightarrow {PB} \). 
D. \(\overrightarrow {AP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP