Câu hỏi:

03/11/2025 10 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.

Có ba nhóm máy \(X,Y,Z\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt phải dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được dùng cho trong bảng sau:

Nhóm

 

Số máy trong mỗi nhóm

Số máy trong từng nhóm để sản xuất ra một đơn vị

Loại I

Loại II

\(X\)

10

2

2

Y

4

0

2

\(Z\)

12

2

4

Một đơn vị sản phẩm loại I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Tổng số tiền lãi thu được là cao nhất bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 17

Gọi \(x\) là số đơn vị sản phẩm loại I, \(y\) là số đơn vị sản phẩm loại II sản xuất ra. Như vậy tiền lãi có được là \(F\left( {x;y} \right) = 3x + 5y\) (nghìn đồng).

Theo giả thiết, số máy cần dùng nhóm X: \(2x + 2y\) (máy); số máy cần dùng ở nhóm Y là \(0x + 2y\) (máy); số máy cần dùng ở nhóm \(Z\) là \(2x + 4y\) (máy).

Ta có hệ bất phương trình \(\left( * \right):\left\{ {\begin{array}{*{20}{l}}{2x + 2y \le 10}\\{2y \le 4}\\{2x + 4y \le 12}\\{x \ge 0,y \ge 0}\end{array}} \right.\) .

Một đơn vị sản phẩm loại I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Tổng số tiền lãi thu được là cao nhất bao nhiêu nghìn đồng? (ảnh 1)

Miền nghiệm của hệ \((*)\) được biểu diễn là miền của ngũ giác \(OABCD\) với \(O(0;0),A(0;2),B(2;2),C(4;1),D(5;0)\).

Xét \(O(0;0)\), ta có \(F(0;0) = 3.0 + 5.0 = 0\);

Xét \(A(0;2)\), ta có \(F(0;2) = 3.0 + 5.2 = 10\);

Xét \(B(2;2)\), ta có \(F(2;2) = 3.2 + 5.2 = 16\);

Xét \(C(4;1)\), ta có \(F(4;1) = 3.4 + 5.1 = 17\);

Xét \(D(5;0)\), ta có \(F(5;0) = 3.5 + 5.0 = 15\).

Từ các kết quả trên, ta thấy khoản lãi lớn nhất \((F(x;y)\) lớn nhất) bằng 17 (nghìn đồng), khi đó người ta cần làm ra 4 sản phẩm loại I và 1 sản phẩm loại II (tức là \(x = 4,y = 1\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(A \cap B = \left( {2;3} \right)\).  

B. \(A \cup B = \left[ { - 1;5} \right]\).
C. \(B\backslash A = \left( {3;5} \right]\).  
D. \(A\backslash B = \left[ { - 1;2} \right]\).

Lời giải

Đáp án đúng là: C

\(B\backslash A = \left[ {3;5} \right]\).

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G,M là trung điểm của BC. Khi đó:  a) vec MD = vec MG + vec GD. (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP