PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Có ba nhóm máy \(X,Y,Z\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt phải dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được dùng cho trong bảng sau:
Nhóm
Số máy trong mỗi nhóm
Số máy trong từng nhóm để sản xuất ra một đơn vị
Loại I
Loại II
\(X\)
10
2
2
Y
4
0
2
\(Z\)
12
2
4
Một đơn vị sản phẩm loại I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Tổng số tiền lãi thu được là cao nhất bao nhiêu nghìn đồng?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Có ba nhóm máy \(X,Y,Z\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt phải dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được dùng cho trong bảng sau:
|
Nhóm
|
Số máy trong mỗi nhóm |
Số máy trong từng nhóm để sản xuất ra một đơn vị |
|
|
Loại I |
Loại II |
||
|
\(X\) |
10 |
2 |
2 |
|
Y |
4 |
0 |
2 |
|
\(Z\) |
12 |
2 |
4 |
Một đơn vị sản phẩm loại I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Tổng số tiền lãi thu được là cao nhất bao nhiêu nghìn đồng?
Quảng cáo
Trả lời:
Trả lời: 17
Gọi \(x\) là số đơn vị sản phẩm loại I, \(y\) là số đơn vị sản phẩm loại II sản xuất ra. Như vậy tiền lãi có được là \(F\left( {x;y} \right) = 3x + 5y\) (nghìn đồng).
Theo giả thiết, số máy cần dùng nhóm X: \(2x + 2y\) (máy); số máy cần dùng ở nhóm Y là \(0x + 2y\) (máy); số máy cần dùng ở nhóm \(Z\) là \(2x + 4y\) (máy).
Ta có hệ bất phương trình \(\left( * \right):\left\{ {\begin{array}{*{20}{l}}{2x + 2y \le 10}\\{2y \le 4}\\{2x + 4y \le 12}\\{x \ge 0,y \ge 0}\end{array}} \right.\) .
Miền nghiệm của hệ \((*)\) được biểu diễn là miền của ngũ giác \(OABCD\) với \(O(0;0),A(0;2),B(2;2),C(4;1),D(5;0)\).
Xét \(O(0;0)\), ta có \(F(0;0) = 3.0 + 5.0 = 0\);
Xét \(A(0;2)\), ta có \(F(0;2) = 3.0 + 5.2 = 10\);
Xét \(B(2;2)\), ta có \(F(2;2) = 3.2 + 5.2 = 16\);
Xét \(C(4;1)\), ta có \(F(4;1) = 3.4 + 5.1 = 17\);
Xét \(D(5;0)\), ta có \(F(5;0) = 3.5 + 5.0 = 15\).
Từ các kết quả trên, ta thấy khoản lãi lớn nhất \((F(x;y)\) lớn nhất) bằng 17 (nghìn đồng), khi đó người ta cần làm ra 4 sản phẩm loại I và 1 sản phẩm loại II (tức là \(x = 4,y = 1\)).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) Đ

a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) Ta có: \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) Ta có: \(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{4}{3}\overrightarrow {BN} \).
d) Ta có: \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} = - \frac{1}{3}\overrightarrow {AM} + \frac{2}{3}\overrightarrow {BN} = - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA} + \overrightarrow {AN} )\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Câu 2
A. \(E\left( { - 9;4} \right)\).
Lời giải
Đáp án đúng là: C
Vì \(E\) đối xứng với \(A\) qua \(B\) nên \(B\) trung điểm của \(AE\).
Do đó \(\left\{ \begin{array}{l}{x_E} = 2{x_B} - {x_A}\\{y_E} = 2{y_B} - {y_A}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} = 2.5 + 2 = 12\\{y_E} = 2.\left( { - 4} \right) - 0 = - 8\end{array} \right.\). Suy ra \(E\left( {12; - 8} \right)\).
Câu 3
A. \(A \cap B = \left( {2;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(b \approx 3257,63\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(0,0028912\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.