Câu hỏi:

03/11/2025 37 Lưu

Tam giác \(ABC\) có \(a = 21,{\rm{ }}b = 17,{\rm{ }}c = 10\). Diện tích của tam giác \(ABC\) bằng:

A. \[{S_{\Delta ABC}} = 16\].

B. \[{S_{\Delta ABC}} = 48\]. 
C. \[{S_{\Delta ABC}} = 24\]. 
D. \[{S_{\Delta ABC}} = 84\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(p = \frac{{21 + 17 + 10}}{2} = 24\).

Do đó \[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {24\left( {24 - 21} \right)\left( {24 - 17} \right)\left( {24 - 10} \right)}  = 84\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1295

Gọi \(x,y\) ( \(x \ge 0;y \ge 0\)) lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Đông tới hai đại lí \(A\) và \(B.\)

Khi đó \(50 - x;70 - y\)lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Tây tới hai đại lí \(A\) và \(B.\)

Ta có hệ bất phương trình

\(\left\{ \begin{array}{l}x + y \le 80\\50 - x + 70 - y \le 45\\0 \le x \le 50\\0 \le y \le 70\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y \le 80\\x + y \ge 75\\0 \le x \le 50\\0 \le y \le 70\end{array} \right.\)

Tổng chi phí giao hàng

\(F\left( {x;y} \right) = 10x + 12y + (50 - x).9 + (70 - y).11{\rm{ }} = {\rm{ }}1220 + x + y{\rm{      }}\)

Miền nghiệm biểu diễn là miền tứ giác \(ABCD\)có \(A\left( {5;70} \right);B\left( {10;70} \right);C\left( {50;30} \right);D\left( {50;25} \right)\)

Chi phí vận chuyển là nhỏ nhất nhà phân phối cần phải trả là bao nhiêu nghìn đồng? (ảnh 1)

Tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh \(A,B,C,D\)ta tìm được GTNN là \(F\left( {5;70} \right) = F\left( {50;25} \right) = 1295\).

Câu 2

A. \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AM} \).  

B. \(\overrightarrow {AG}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\).  

C. \(\overrightarrow {AG}  = \frac{3}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\). 
D. \(\overrightarrow {AG}  = \frac{1}{3}\overrightarrow {AM} \).

Lời giải

Đáp án đúng là: B

Ta có \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)\( = \frac{1}{3}\left( {\overrightarrow {AB}+ \overrightarrow {AC} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {OA}  = \overrightarrow {OC} \).

B. \(\overrightarrow {AB}  = \overrightarrow {DC} \). 
C. \(\overrightarrow {CB}  = \overrightarrow {DA} \). 
D. \(\overrightarrow {OB}  = \overrightarrow {DO} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP