Câu hỏi:

03/11/2025 13 Lưu

Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động vào một vật đặt tại điểm \(O\). Biết hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều có cường độ là 20 N và chúng hợp với nhau một góc \(80^\circ \). Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (kết quả làm tròn đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 30,64

Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (kết quả làm tròn đến hàng phần trăm)? (ảnh 1)

Dựng \(\overrightarrow {OA}  = \overrightarrow {{F_1}} \), \(\overrightarrow {OB}  = \overrightarrow {{F_2}} \) và \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \). Khi đó \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {OC} \).

Ta có \(OA = OB = 20,\widehat {AOB} = 80^\circ \) và \(OACB\) là hình thoi nên

\(OA = AC = 20;\widehat {AOC} = \widehat {ACO} = 40^\circ ,\widehat {OAC} = 100^\circ \).

Áp dụng định lý côsin cho tam giác \(OAC\) ta có:

\(OC = \sqrt {O{A^2} + A{C^2} - 2OA.AC.\cos \widehat {OAC}} \)\( = \sqrt {{{20}^2} + {{20}^2} - 2.20.20.\cos 100^\circ }  \approx 30,64\).

Vậy vật đó phải chịu một lực tổng hợp có cường độ bằng \(30,64\) N.

Câu 5. Trong mặt phẳng với hệ trục tọa độ ; cho tam giác  có  và

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1295

Gọi \(x,y\) ( \(x \ge 0;y \ge 0\)) lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Đông tới hai đại lí \(A\) và \(B.\)

Khi đó \(50 - x;70 - y\)lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Tây tới hai đại lí \(A\) và \(B.\)

Ta có hệ bất phương trình

\(\left\{ \begin{array}{l}x + y \le 80\\50 - x + 70 - y \le 45\\0 \le x \le 50\\0 \le y \le 70\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y \le 80\\x + y \ge 75\\0 \le x \le 50\\0 \le y \le 70\end{array} \right.\)

Tổng chi phí giao hàng

\(F\left( {x;y} \right) = 10x + 12y + (50 - x).9 + (70 - y).11{\rm{ }} = {\rm{ }}1220 + x + y{\rm{      }}\)

Miền nghiệm biểu diễn là miền tứ giác \(ABCD\)có \(A\left( {5;70} \right);B\left( {10;70} \right);C\left( {50;30} \right);D\left( {50;25} \right)\)

Chi phí vận chuyển là nhỏ nhất nhà phân phối cần phải trả là bao nhiêu nghìn đồng? (ảnh 1)

Tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh \(A,B,C,D\)ta tìm được GTNN là \(F\left( {5;70} \right) = F\left( {50;25} \right) = 1295\).

Lời giải

Trả lời: 5,85

Ta có \(\widehat {ABC} = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \).

Theo định lí \(\sin \) trong tam giác \(ABC\), ta có

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Rightarrow BC = \frac{{AB.\sin 40^\circ }}{{\sin 60^\circ }} = \frac{{4.\sin 40^\circ }}{{\sin 60^\circ }} \approx 2,97{\rm{cm}}\).

Diện tích tam giác \(ABC\):

\(S = \frac{1}{2}.AB.BC.\sin B = \frac{1}{2}.4.2,97.\sin 80^\circ  \approx 5,85{\rm{c}}{{\rm{m}}^{\rm{2}}}\)

Câu 5

A. \(\left\{ {2;3} \right\}\). 

B. \(\left\{ 3 \right\}\).
C. \(\left\{ {3;5} \right\}\).
D. \(\left\{ {2;3;5} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP