Câu hỏi:

04/11/2025 46 Lưu

Cho tứ diện \(ABCD\)\(G\) là trọng tâm của tam giác \(ABD\), \(Q\) thuộc cạnh\(AB\) sao cho \(AQ = 2QB\), \(P\) là trung điểm của \(AB\). Khi đó       

A. \(MN\,{\rm{//}}\,\left( {BCD} \right)\);                                                          
B. \(GQ\,{\rm{//}}\,\left( {BCD} \right)\);        
C. \(MN\) cắt \(\left( {BCD} \right)\);   
D. \(Q\) thuộc mặt phẳng \(\left( {CDP} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Gọi \(M\) là trung điểm của \[BD\].

\(G\) là trọng tâm tam giác \[ABD\] nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\).

Điểm \(Q \in AB\) sao cho \(AQ = 2QB\) suy ra \(\frac{{AQ}}{{AB}} = \frac{2}{3}\).

Khi đó \(\frac{{AG}}{{AM}} = \frac{{AQ}}{{AB}} = \frac{2}{3}\), theo định lí Thalès đảo ta có \(QC\,{\rm{//}}\,BD\).

Mặt khác \[BD\] nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \[GQ\,{\rm{//}}\,\left( {BCD} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. “\(\forall x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
B. “\(\forall x \in \mathbb{R}|x\,\, \vdots \,\,2\)”;
C. “\(\exists x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
D. “\(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Biểu diễn mệnh đề “Tồn tại số thực \(x\) để \(x\) chia hết cho 2” dưới dạng kí hiệu là

 \(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Câu 2

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                              
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Câu 3

A. \({a^2} = {b^2} + {c^2} - 2bc.\cos A\);      
B. \(b = \frac{{c.\sin B}}{{\sin C}}\);
C. \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) ;              
D. \(S = ab.\sin C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hà Nội là thủ đô của Việt Nam;
B. Hình chữ nhật có hai đường chéo vuông góc với nhau;
C. 2 là số nguyên tố;
D. Hôm nay là thứ mấy?.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. A¯:"x,x2x+7<0" ;                                                                     
B. A¯:"x,x2x+7>0" ;
C. A¯:"x,x2x+7>0" ;                                                                     
D. A¯:"x,x2 x+70" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 3x + 2y - 4 > 0\];                                            
B. \[x + 3y < 0\];
C. \[3x - y > 0\];                                                        
D. \[2x - y + 4 > 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP