CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình b (ảnh 1)

a) Do \(M,I\) lần lượt là trung điểm của \(SD,SG\) nên \(MI\) là đường trung bình của tam giác \(SDG\).

Do đó \(MI\,{\rm{//}}\,DG\) hay \(MI\,{\rm{//}}\,BD\).

b) Trong \(\left( {SBD} \right)\) kẻ \(MI\) cắt \(SO\) tại \(E\) (với \(O\) là tâm hình bình hành \(ABCD\))

Trong \(\left( {SAC} \right)\) kẻ \(CE\) cắt \(SA\) tại \(F\).

Khi đó \(\left\{ \begin{array}{l}F \in SA\\F \in \left( {CMI} \right)\end{array} \right.\) hay \(F = SA \cap \left( {CMI} \right)\)

Kẻ \(ON\,{\rm{//}}\,CF\) với \(N \in SA\).

Do \(O\) là trung điểm của \(AC\) nên \(N\) là trung điểm của \[FA\].

Vì \(FE\,{\rm{//}}\,NO\) và \(E\) là trung điểm của \(SO\) nên \(F\) là trung điểm của \(SN\).

Vậy \(\frac{{FS}}{{FA}} = \frac{1}{2}.\)    

Lời giải

Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{n^2} + n + 1}}{{2{n^2} + 1}} = \frac{1}{2} + \frac{{n + \frac{3}{2}}}{{2{n^2} + 1}}\)

Với mọi \(n \in \mathbb{N}*,\) xét hiệu số:

\({u_{n + 1}} - {u_n} = \frac{1}{2} + \frac{{n + 1 + \frac{3}{2}}}{{2{{\left( {n + 1} \right)}^2} + 1}} - \left( {\frac{1}{2} + \frac{{n + \frac{3}{2}}}{{2{n^2} + 1}}} \right)\) \( = \frac{{n + \frac{5}{2}}}{{2{n^2} + 2n + 3}} - \frac{{n + \frac{3}{2}}}{{2{n^2} + 1}}\)

\( = \frac{{\left( {n + \frac{5}{2}} \right)\left( {2{n^2} + 1} \right) - \left( {n + \frac{3}{2}} \right)\left( {2{n^2} + 2n + 3} \right)}}{{\left( {2{n^2} + 2n + 3} \right)\left( {2{n^2} + 1} \right)}}\) \( = \frac{{ - 5n - 2}}{{\left( {2{n^2} + 2n + 3} \right)\left( {2{n^2} + 1} \right)}} < 0{\rm{   }}\forall n \ge 1.\)

Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Không có giao điểm.                                  
B. Giao điểm của đường thẳng \(SB\)\(MC.\)
C. Trung điểm của đoạn thẳng \(SB\).         
D. Giao điểm của đường thẳng \(SB\)\(MD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {ABD} \right)\).                      
B. \(\left( {MND} \right)\).    
C. \(\left( {BCD} \right)\).                  
D. \(\left( {ACD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP