Câu hỏi:

05/11/2025 45 Lưu

Điểm nào dưới đây thuộc miền nghiệm của bất phương trình \(3x - 5y < 2\).

A. \(Q\left( { - 2; - 3} \right)\). 

B. \(M\left( {2;1} \right)\).        
C. \(P\left( {4;2} \right)\).    
D. \(N\left( {1; - 2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Thay lần lượt tọa độ của 4 điểm vào bất phương trình \(3x - 5y < 2\) thì ta được tọa độ điểm \(M\left( {2;1} \right)\) thỏa mãn bất phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G, M là trung điểm của BC. Khi đó:  a) vec MD = vec MG + vec GD. (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)

Lời giải

Trả lời: 0

Ta có điêu kiện: \( - 20 < x < 30\).

Diện tích hình chữ nhật lúc sau là: \(S = (30 - x) \cdot (20 + x) =  - {x^2} + 10x + 600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

Diện tích hình chữ nhật lúc đầu là \(600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

Đặt \(f(x) =  - {x^2} + 10x + 600 - 600 =  - {x^2} + 10x\).

\(f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\).

Ta có bảng xét dấu của \(f(x)\)

Một khung dây thép hình chữ nhật với chiều dài 30cm và chiều rộng 20cm được uốn lại thành hình chữ nhật mới với kích thước (30 - x)cm và (20 + x)cm. Giả sử diện tích khung sau khu uốn tăng lên với x thuộc (a;b). Tính a.b. (ảnh 1)

Diện tích của khung sau khi uốn tăng lên khi \(f(x) > 0 \Leftrightarrow x \in (0;10)\).

Suy ra \(a = 0;b = 10\). Do đó \(a.b = 0\).

Câu 4

A. \(b =  - 1\). 

B. \(b = 1\). 
C. \(b = 3\).
D. \(b =  - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP