PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x + 5y \ge - 4\\x + 3y \le 9\\3x - 2y \ge - 6\\x \le 3\end{array} \right.\).
a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.
b) \(\left( { - 1;2} \right)\) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tam giác đều.
d) \(x = 3;y = 2\) là nghiệm của hệ bất phương trình trên sao cho \(F = 3x - y\) đạt giá trị lớn nhất.
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x + 5y \ge - 4\\x + 3y \le 9\\3x - 2y \ge - 6\\x \le 3\end{array} \right.\).
a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.
b) \(\left( { - 1;2} \right)\) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tam giác đều.
d) \(x = 3;y = 2\) là nghiệm của hệ bất phương trình trên sao cho \(F = 3x - y\) đạt giá trị lớn nhất.
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S
a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.
b) \(\left( { - 1;2} \right)\) không là nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ là miền tứ giác ABCD (tô mầu vàng) như hình.
d) Ta có \(A\left( { - 2;0} \right),B\left( {0;3} \right),C\left( {3;2} \right),D\left( {3; - 2} \right)\).
Ta có \(F\left( { - 2;0} \right) = - 6;F\left( {0;3} \right) = - 3;F\left( {3;2} \right) = 7;F\left( {3; - 2} \right) = 11\).
Vậy \(F = 3x - y\) đạt giá trị lớn nhất là \(11\) khi \(x = 3;y = - 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) Đ
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) Ta có: \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) Ta có: \(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{4}{3}\overrightarrow {BN} \).
d) Ta có: \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} = - \frac{1}{3}\overrightarrow {AM} + \frac{2}{3}\overrightarrow {BN} = - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA} + \overrightarrow {AN} )\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Lời giải
Trả lời: 0
Ta có điêu kiện: \( - 20 < x < 30\).
Diện tích hình chữ nhật lúc sau là: \(S = (30 - x) \cdot (20 + x) = - {x^2} + 10x + 600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).
Diện tích hình chữ nhật lúc đầu là \(600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).
Đặt \(f(x) = - {x^2} + 10x + 600 - 600 = - {x^2} + 10x\).
\(f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\).
Ta có bảng xét dấu của \(f(x)\)
Diện tích của khung sau khi uốn tăng lên khi \(f(x) > 0 \Leftrightarrow x \in (0;10)\).
Suy ra \(a = 0;b = 10\). Do đó \(a.b = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(b = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
