Câu hỏi:

05/11/2025 37 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x + 5y \ge  - 4\\x + 3y \le 9\\3x - 2y \ge  - 6\\x \le 3\end{array} \right.\).

a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.

b) \(\left( { - 1;2} \right)\) là một nghiệm của hệ bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tam giác đều.

d) \(x = 3;y = 2\) là nghiệm của hệ bất phương trình trên sao cho \(F = 3x - y\) đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) S

a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.

b) \(\left( { - 1;2} \right)\) không là nghiệm của hệ bất phương trình.

c) Miền nghiệm của hệ là miền tứ giác ABCD (tô mầu vàng) như hình.

a) (0;0) là một nghiệm của hệ bất phương trình.  b) ( - 1;2) là một nghiệm của hệ bất phương trình. (ảnh 1)

d) Ta có \(A\left( { - 2;0} \right),B\left( {0;3} \right),C\left( {3;2} \right),D\left( {3; - 2} \right)\).

Ta có \(F\left( { - 2;0} \right) =  - 6;F\left( {0;3} \right) =  - 3;F\left( {3;2} \right) = 7;F\left( {3; - 2} \right) = 11\).

Vậy \(F = 3x - y\) đạt giá trị lớn nhất là \(11\) khi \(x = 3;y =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G, M là trung điểm của BC. Khi đó:  a) vec MD = vec MG + vec GD. (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)

Lời giải

Trả lời: 9

Xét một người mua \(x\) gói kẹo ( \(x\) nguyên dương).

Khi đó: Gói thứ nhất người đó trả 60000 đồng.

Số gói kẹo còn lại là \(x - 1\) và người đó chỉ phải trả

\(60000 - 10\% .60000 = 54000\) đồng (mỗi gói).

Vậy số tiền phải trả khi mua kẹo được tính theo công thức

\(y = 60000 + (x - 1) \cdot 54000 = 54000x + 6000\).

Số tiền bạn An dùng mua kẹo phải không quá 500000 đồng, suy ra: \(54000x + 6000 \le 500000 \Rightarrow x \le \frac{{247}}{{27}} \approx 9,148\).

Vậy, với số tiền hiện có, bạn An chỉ có thể mua được tối đa 9 gói kẹo.

Câu 3

A. \(b =  - 1\). 

B. \(b = 1\). 
C. \(b = 3\).
D. \(b =  - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP