Câu hỏi:

05/11/2025 11 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn.Thí sinh trả lời câu 1 đến câu 6.

Trong đợt khảo sát nghề, giáo viên chủ nhiệm lớp 10A đưa ra ba nhóm ngành cho học sinh lựa chọn đó là: Giáo dục, Y tế, Công nghệ thông tin. Học sinh có thể chọn từ một đến ba nhóm ngành nêu trên hoặc không chọn nhóm ngành nào trong ba nhóm ngành trên. Giáo viên chủ nhiệm thống kê theo từng nhóm ngành và được kết quả: có 6 học sinh chọn nhóm ngành Giáo dục, 9 học sinh chọn nhóm ngành Y tế, 10 học sinh chọn nhóm ngành Công nghệ thông tin, 22 học sinh không chọn nhóm ngành nào trong ba nhóm trên. Nếu thống kê số lượng học sinh chọn theo từng hai nhóm ngành được kết quả: có 3 học sinh chọn hai nhóm ngành Giáo dục và Y tế, 2 học sinh chọn hai nhóm ngành Y tế và Công nghệ thông tin, 3 học sinh chọn hai nhóm ngành Giáo dục và Công nghệ thông tin. Hỏi có bao nhiêu học sinh chọn cả ba nhóm ngành nêu trên biết lớp 10A có 40 học sinh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1

Gọi A, B, C lần lượt là tập hợp học sinh chọn nhóm ngành Giáo dục, Y tế, Công nghệ thông tin.

Khi đó \(A \cup B \cup C\) là tập hợp các học sinh chọn ít nhất một trong ba nhóm ngành trên.

Do lớp có 40 học sinh và 22 học sinh không chọn nhóm ngành trong ba nhóm ngành trên nên số học sinh chọn ít nhất một trong ba nhóm ngành trên là 40 – 22 = 18.

Ta có \(n\left( A \right) = 6,n\left( B \right) = 9,n\left( C \right) = 10,n\left( {A \cup B \cup C} \right) = 18\);

\(n\left( {A \cap B} \right) = 3;n\left( {B \cap C} \right) = 2;n\left( {A \cap C} \right) = 3\).

Ta có

 \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {B \cap C} \right) - n\left( {A \cap B} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\).

Số học sinh chọn cả ba nhóm ngành trên là:

\(n\left( {A \cap B \cap C} \right) = n\left( {A \cup B \cup C} \right) - n\left( A \right) - n\left( B \right) - n\left( C \right) + n\left( {B \cap C} \right) + n\left( {A \cap B} \right) + n\left( {A \cap C} \right)\)

\(n\left( {A \cap B \cap C} \right) = 18 + 3 + 2 + 3 - 6 - 9 - 10 = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 139,06.

Tính cường độ tổng hợp của hai lực trên (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Đặt \(\overrightarrow {{F_1}}  = \overrightarrow {AB} ,\overrightarrow {{F_2}}  = \overrightarrow {AD} \).

Vẽ hình bình hành \(ABCD\).

Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

Vì \(\widehat {BAD} = 45^\circ \)\( \Rightarrow \widehat {ABC} = 135^\circ \), \(AD = BC = 90\).

Áp dụng định lí côsin ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos 135^\circ \)

\(A{C^2} = {60^2} + {90^2} - 2.60.90.\cos 135^\circ  \approx 19336,75\).

Suy ra \(AC \approx 139,06\).

Lời giải

a) Đ, b) S, c) Đ, d) S

a) Mệnh đề đảo của mệnh đề P Þ Q là mệnh đề: “Nếu ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác ABCD là hình vuông”.

b) \(A \cup B = \){\(x|x \in A\) hoặc \(x \in B\)}.

c) Mệnh đề phủ định của mệnh đề \(\forall x \in \mathbb{R},{x^2} + 1 = 0\) là \(\exists x \in \mathbb{R},{x^2} + 1 \ne 0\).

d) Số học sinh thích chơi cả hai môn cầu lông và bóng đá là: 40 – (18 + 13) = 9 (học sinh).

Câu 5

A. \(\cos \alpha  < 0\).

B. \(\cot \alpha  > 0\).  
C. \(\sin \alpha  < 0\).   
D. \(\tan \alpha  > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP