Câu hỏi:

05/11/2025 68 Lưu

Cho hình chóp \(S.ABCD\) \(AD\) không song song với \(BC\). Gọi \(M,\,\,N,\,\,P,\,\,Q,\,\,R,\,\,T\) lần lượt là trung điểm của \(AC,\,\,BD,\,\,BC,\,\,CD,\,\,SA,\,\,SD\). Cặp đường thẳng nào sau đây song song với nhau?

A. \(MP\) \(RT\).            
B. \(MQ\) \(RT\).              
C. \(MN\) \(RT\).            
D. \(PQ\) \(RT\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Ta có \(M,\,\,Q\) lần lượt là trung điểm của \(AC,\,\,CD\).

Suy ra \(MQ\) là đường trung bình của tam giác MQ // AD(1)

Mặt khác \(R,\,\,T\) lần lượt là trung điểm của \(SA,\,\,SD\).

Suy ra \(RT\) là đường trung bình của tam giác \(SAD\) nên RT // SD(2)

Từ (1) và (2) suy ra \(MQ\,{\rm{//}}\,RT\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} \)\(\overrightarrow {BI} \) cùng hướng;                                                         
B. \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng;
C. \(\overrightarrow {AI} \)\(\overrightarrow {IB} \) ngược hướng;                                                      
D. \(\overrightarrow {AI} \)\(\overrightarrow {BI} \) không cùng phương.

Lời giải

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng phương.

Và chúng cùng hướng từ trái sang phải.

Do đó, \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng.

Câu 2

A. \( - \frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \);                 
B. \(\frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \);
C. \( - \frac{3}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \);                 
D. \(\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: A

Đáp án đúng là: D (ảnh 1)

Xét tam giác \(ABC\) có:

\(BM = \frac{1}{4}AB \Rightarrow AM = \frac{3}{4}AB \Rightarrow \overrightarrow {MA} = - \frac{3}{4}\overrightarrow {AB} \)

\(AN = \frac{3}{4}AC \Rightarrow \,\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} \)

Vậy \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = - \frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Câu 3

A. \(\left( {1;2} \right)\);                                    
B. \(\left( {4;5} \right)\);                      
C. \(\left( {10;30} \right)\);            
D. \(\left( { - 5;10} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\) (không kể bờ);
B. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) chứa điểm \(\left( {0;0} \right)\) (có kể bờ);
C. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\) (có kể bờ);
D. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\)(không kể bờ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 1;6} \right)\)                                   
B. \(\left( {45;69} \right)\);         
C. \(\left( {23;34} \right)\);                      
D. \(\left( {1;50} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ {3;5} \right]\);                                     
B. \(\left( {3;5} \right)\);                      
C. \(\left[ {1;3} \right]\); 
D. \(\left[ {1;58} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP