Câu hỏi:

05/11/2025 35 Lưu

Cho tam giác \(ABC\) có \(b = 7{\rm{cm}}{\rm{,}}\)\(c = 5\;{\rm{cm}}\), \(\widehat A = 120^\circ \). Các mệnh đề sau đúng hay sai?

a) \(S = \frac{1}{2}bc\cos A\).

b) \(a = \sqrt {127} \) cm.

c) \(\cos C \approx 0,91\).

d) \(R \approx 6,03\) cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) Đ, d) Đ

a) \(S = \frac{1}{2}bc\sin A\).

b) Ta có \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)\( = {7^2} + {5^2} - 2.7.5.\cos 120^\circ  = 109\)\( \Rightarrow a = \sqrt {109} \).

c) Ta có \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2.a.b}} = \frac{{109 + 49 - 25}}{{2.\sqrt {109} .7}} \approx 0,91\).

d) Có \(\frac{a}{{\sin A}} = 2R \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{\sqrt {109} }}{{2\sin 120^\circ }} \approx 6,03\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).  

B. \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

C. \(\overrightarrow {AD}  = \overrightarrow {EC} \). 
D. \(\overrightarrow {DE}  =  - \overrightarrow {CB} \).

Lời giải

Đáp án đúng là: D

Cho hình thang cân ABCD có AB//CD, AB = 2AD = 2CD, E là trung điểm cạnh AB.Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

Vì \(AB = 2CD\) nên \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).

Vì E là trung điểm của AB nên \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

Vì ADCE là hình bình hành nên \(\overrightarrow {AD}  = \overrightarrow {EC} \).

Vì DCBE là hình bình hành nên \(\overrightarrow {DE}  = \overrightarrow {CB} \).

Câu 2

A. \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).   

B. \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

C. \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BM} \). 
D. \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC}  + \overrightarrow {MD} \).

Lời giải

Đáp án đúng là: D

Cho hình vuông ABCD, có M là giao điểm của hai đường chéo. Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

\(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

\(\overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD}  = 2\overrightarrow {BM} \) (vì M là trung điểm của \(BD\)).

Câu 4

A. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng phương.

B. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng ngược hướng và cùng độ dài.

C. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng độ dài.

D. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP