Cửa hàng thời trang Việt Tiến muốn kinh doanh thêm 2 loại áo thun mẫu mới trong dịp tết này với số vốn đầu tư không quá 72 triệu đồng. Loại dài tay giá mua vào 800 000 đồng và lãi 150 000 đồng 1 áo, loại ngắn tay giá mua vào 600 000 đồng và lãi 120 000 đồng 1 áo. Cửa hàng ước tính nhu cầu của khách không quá 100 cái cho cả 2 loại. Để kinh doanh có lãi nhiều nhất thì cửa hàng cần nhập bao nhiêu áo dài tay.
Quảng cáo
Trả lời:
Trả lời: 60
Gọi \(x,y\left( {x \ge 0,y \ge 0,x,y \in \mathbb{N}} \right)\)lần lượt là số áo dài tay và ngắn tay mà cửa hàng nên mua để kinh doanh có lãi nhất.
Theo yêu cầu bài toán, ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\8x + 6y \le 720\end{array} \right.\) (*)
Ta cần tìm \(x,y\) để biểu thức \(F = 150000x + 120000y\) đạt giá trị lớn nhất trên miền nghiệm của (*)
Miền nghiệm là tứ giác OABC (phần tô màu)
Các điểm có tọa độ như sau: \(O\left( {0;0} \right),A\left( {0;100} \right),B\left( {60;40} \right),C\left( {90;0} \right)\).
Tại \(O\left( {0;0} \right)\) thì \(F = 0\).
Tại \(A\left( {0;100} \right)\) thì \(F = 150000.0 + 120000.100 = 12000000\);
Tại \(B\left( {60;40} \right)\) thì \(F = 150000.60 + 120000.40 = 13800000\);
Tại \(C\left( {90;0} \right)\) thì \(F = 150000.90 + 120000.0 = 13500000\).
Vậy cửa hàng nên nhập 60 áo dài tay và 40 áo ngắn tay để kinh doanh thì có lãi nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 494
Số tiền bạn Trâm phải trả là:
\(11000.0,5 + 14500.\left( {31 - 0,5} \right) + 11600\left( {35 - 31} \right) \approx 494000\) đồng.
Lời giải
Trả lời: 43,3
Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = - \overrightarrow {{F_3}} \).
Dựng hình bình hành \(MADB\), ta có:
\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MD} \).
Vì \(\Delta MAB\) có \(MA = MB,\widehat {AMB} = 60^\circ \) nên \(\Delta MAB\) đều. Suy ra \(MD = 2.\frac{{25\sqrt 3 }}{2} = 25\sqrt 3 \).
Do đó \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MD} } \right| = MD = 25\sqrt 3 \approx 43,3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

