Câu hỏi:

05/11/2025 43 Lưu

Cửa hàng thời trang Việt Tiến muốn kinh doanh thêm 2 loại áo thun mẫu mới trong dịp tết này với số vốn đầu tư không quá 72 triệu đồng. Loại dài tay giá mua vào 800 000 đồng và lãi 150 000 đồng 1 áo, loại ngắn tay giá mua vào 600 000 đồng và lãi 120 000 đồng 1 áo. Cửa hàng ước tính nhu cầu của khách không quá 100 cái cho cả 2 loại.  Để kinh doanh có lãi nhiều nhất thì cửa hàng cần nhập bao nhiêu áo dài tay.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 60

Gọi \(x,y\left( {x \ge 0,y \ge 0,x,y \in \mathbb{N}} \right)\)lần lượt là số áo dài tay và ngắn tay mà cửa hàng nên mua để kinh doanh có lãi nhất.

Theo yêu cầu bài toán, ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\8x + 6y \le 720\end{array} \right.\) (*)

Ta cần tìm \(x,y\) để biểu thức \(F = 150000x + 120000y\) đạt giá trị lớn nhất trên miền nghiệm của (*)

Để kinh doanh có lãi nhiều nhất thì cửa hàng cần nhập bao nhiêu áo dài tay. (ảnh 1)

Miền nghiệm là tứ giác OABC (phần tô màu)

Các điểm có tọa độ như sau: \(O\left( {0;0} \right),A\left( {0;100} \right),B\left( {60;40} \right),C\left( {90;0} \right)\).

Tại  \(O\left( {0;0} \right)\) thì \(F = 0\).

Tại \(A\left( {0;100} \right)\) thì \(F = 150000.0 + 120000.100 = 12000000\);

Tại \(B\left( {60;40} \right)\) thì \(F = 150000.60 + 120000.40 = 13800000\);

Tại \(C\left( {90;0} \right)\) thì \(F = 150000.90 + 120000.0 = 13500000\).

Vậy cửa hàng nên nhập 60 áo dài tay và 40 áo ngắn tay để kinh doanh thì có lãi nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).  

B. \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

C. \(\overrightarrow {AD}  = \overrightarrow {EC} \). 
D. \(\overrightarrow {DE}  =  - \overrightarrow {CB} \).

Lời giải

Đáp án đúng là: D

Cho hình thang cân ABCD có AB//CD, AB = 2AD = 2CD, E là trung điểm cạnh AB.Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

Vì \(AB = 2CD\) nên \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).

Vì E là trung điểm của AB nên \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

Vì ADCE là hình bình hành nên \(\overrightarrow {AD}  = \overrightarrow {EC} \).

Vì DCBE là hình bình hành nên \(\overrightarrow {DE}  = \overrightarrow {CB} \).

Câu 2

A. \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).   

B. \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

C. \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BM} \). 
D. \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC}  + \overrightarrow {MD} \).

Lời giải

Đáp án đúng là: D

Cho hình vuông ABCD, có M là giao điểm của hai đường chéo. Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

\(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

\(\overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD}  = 2\overrightarrow {BM} \) (vì M là trung điểm của \(BD\)).

Câu 4

A. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng phương.

B. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng ngược hướng và cùng độ dài.

C. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng độ dài.

D. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP