Câu hỏi:

05/11/2025 24 Lưu

Một hình thang vuông \(ABCD\) có đáy lớn \(AB = 8a\), đáy nhỏ \(CD = 4a\), đường cao \(AD = 6a\), \(I\) là trung điểm của \(AD\). Tính giá trị \(\left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right).\overrightarrow {ID} \) có dạng \(k{a^2}\). Khi đó \(k\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: −18

Tính giá trị ( vecto IA + vecto IB). vecto D có dạng ka mũ 2. Khi đó k bằng bao nhiêu? (ảnh 1)

Ta có \(\left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right).\overrightarrow {ID}  = \left( {\overrightarrow {IA}  + \overrightarrow {IA}  + \overrightarrow {AB} } \right).\overrightarrow {ID} \)\( = 2\overrightarrow {IA} .\overrightarrow {ID}  + \overrightarrow {AB} .\overrightarrow {ID} \)\( = 2\overrightarrow {IA} .\overrightarrow {ID} \)

\( = 2.\left| {\overrightarrow {IA} } \right|.\left| {\overrightarrow {ID} } \right|.\cos 180^\circ  =  - 2.3a.3a =  - 18{a^2}\).

Suy ra \(k =  - 18\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).  

B. \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

C. \(\overrightarrow {AD}  = \overrightarrow {EC} \). 
D. \(\overrightarrow {DE}  =  - \overrightarrow {CB} \).

Lời giải

Đáp án đúng là: D

Cho hình thang cân ABCD có AB//CD, AB = 2AD = 2CD, E là trung điểm cạnh AB.Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

Vì \(AB = 2CD\) nên \(\overrightarrow {AB}  = 2\overrightarrow {DC} \).

Vì E là trung điểm của AB nên \(\overrightarrow {CA}  + \overrightarrow {CB}  = 2\overrightarrow {CE} \).

Vì ADCE là hình bình hành nên \(\overrightarrow {AD}  = \overrightarrow {EC} \).

Vì DCBE là hình bình hành nên \(\overrightarrow {DE}  = \overrightarrow {CB} \).

Câu 2

A. \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).   

B. \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

C. \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BM} \). 
D. \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC}  + \overrightarrow {MD} \).

Lời giải

Đáp án đúng là: D

Cho hình vuông ABCD, có M là giao điểm của hai đường chéo. Trong các mệnh đề sau, tìm mệnh đề sai? (ảnh 1)

\(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

\(\overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD}  = 2\overrightarrow {BM} \) (vì M là trung điểm của \(BD\)).

Câu 4

A. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng phương.

B. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng ngược hướng và cùng độ dài.

C. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng độ dài.

D. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP