Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
A. \(y = \sin \frac{x}{2}.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
• Tại \(x = 0\) thì \(y = 0\). Do đó loại B và C.
• Tại \(x = \pi \) thì \(y = - 1\). Thay vào hai đáp án còn lại chỉ có D thỏa mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

Vì \(E\) là điểm đối xứng của \(D\) qua \(C\) nên \(C\) là trung điểm của \(DE\), do đó \(DE = 2DC = 2 \cdot 3 = 6\).
Ta có: \(\overrightarrow {AE} \cdot \overrightarrow {AB} = \left( {\overrightarrow {AD} + \overrightarrow {DE} } \right) \cdot \overrightarrow {AB} = \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DE} \cdot \overrightarrow {AB} \)
Do \(AB \bot AD\) nên \(\overrightarrow {AD} \cdot \overrightarrow {AB} = 0\).
Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DE} \) cùng hướng nên \(\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {DE} } \right) = 0^\circ \).
Do đó, \(\overrightarrow {DE} \cdot \overrightarrow {AB} = \left| {\overrightarrow {DE} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {DE} } \right) = DE \cdot AB \cdot \cos 0^\circ = 6 \cdot 3 \cdot 1 = 18\).
Vậy \(\overrightarrow {AE} \cdot \overrightarrow {AB} = 0 + 18 = 18\).
Lời giải
![Cho tam giác \[ABC\] có trực tâm \(H\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/7-1763354073.png)
Do \(M\) là trung điểm của cạnh \(BC\) nên ta có:
\[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{2}\left( {\overrightarrow {BH} + \overrightarrow {CH} } \right) \cdot \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {CA} } \right)\] \[ = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {BH} \cdot \overrightarrow {CA} + \overrightarrow {CH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
Vì \(H\) là trực tâm của \[\Delta ABC,\] nên \[BH \bot CA{\rm{ }},{\rm{ }}CH \bot BA\] \[ \Rightarrow \overrightarrow {BH} \cdot \overrightarrow {CA} = 0,{\rm{ }}\overrightarrow {CH} \cdot \overrightarrow {BA} = 0\].
Do đó, \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
\[ = \frac{1}{4}\left[ {\overrightarrow {BH} \cdot \left( {\overrightarrow {BC} + \overrightarrow {CA} } \right) + \overrightarrow {CH} \cdot \left( {\overrightarrow {BA} - \overrightarrow {BC} } \right)} \right] = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BC} - \overrightarrow {CH} \cdot \overrightarrow {BC} } \right)\]
\( = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} - \overrightarrow {CH} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} + \overrightarrow {HC} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \overrightarrow {BC} = \frac{1}{4}{\overrightarrow {BC} ^2} = \frac{1}{4}B{C^2}\).
Vậy \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}B{C^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
