Câu hỏi:

06/11/2025 23 Lưu

Tìm giá trị thực của tham số \(m\) để phương trình \(\left( {m - 2} \right)\sin 2x = m + 1\) nhận \(x = \frac{\pi }{{12}}\) làm nghiệm.

A. \(m \ne 2.\)           
B. \(m = \frac{{2\left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 - 2}}.\)                                      
C. \(m = - 4.\)         
D. \(m = - 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

\(x = \frac{\pi }{{12}}\) là một nghiệm của phương trình \(\left( {m - 2} \right)\sin 2x = m + 1\) nên ta có:

\(\left( {m - 2} \right) \cdot \sin \frac{\pi }{{12}} = m + 1 \Leftrightarrow \frac{{m - 2}}{2} = m + 1\)

\( \Leftrightarrow m - 2 = 2m + 2 \Leftrightarrow m = - 4.\)

Vậy \(m = - 4\) là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ