PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 4\\x + 2y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 4\\x + 2y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) S
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thấy tọa độ điểm \(\left( {4;1} \right)\) không thỏa mãn hệ nên \(\left( {4;1} \right)\) không thuộc miền nghiệm của hệ.
c) Miền nghiệm của hệ như hình vẽ

d) Ta có \(F\left( O \right) = 2024,F\left( H \right) = 2032,F\left( G \right) = 2030,F\left( E \right) = \frac{{6100}}{3}\) nên biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất là tại \(\left( {\frac{4}{3};\frac{4}{3}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) S
a) \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \).
b) \(\overrightarrow {AI} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )\).
c) \(\overrightarrow {AI} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AB} + \overrightarrow {AD} )\)\( = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
d) \(\overrightarrow {AJ} = \frac{1}{2}(\overrightarrow {AD} + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} .\)
Câu 2
A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).
Lời giải
Đáp án đúng là: A
Vì \(\widehat A = 60^\circ \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)
Câu 3
A. \[\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \].
B. \[\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {MA} = \overrightarrow {MB} .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
