Quan sát đồ thị hàm số bậc hai \(y = f(x)\) ở Hình
Khi đó:
Quan sát đồ thị hàm số bậc hai \(y = f(x)\) ở Hình

Khi đó:
a) \(a > 0.\)
b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)
c) Đồng biến trên khoảng \(( - \infty ;2)\); Nghịch biến trên khoảng \((2; + \infty )\).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) Đ
a) \(a > 0.\)
b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)
c) Đồng biến trên khoảng \((2; + \infty )\); Nghịch biến trên khoảng \(( - \infty ;2)\).
d) \(x\) thuộc các khoảng \(( - \infty ;1)\) và \((3; + \infty )\) thì \(f(x) > 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \).
b) \(\overrightarrow {AI} = \overrightarrow {AC} + \overrightarrow {AB} \).
c) \(\overrightarrow {AI} = \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AD} \).
Lời giải
a) Đ, b) S, c) S, d) S
a) \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \).
b) \(\overrightarrow {AI} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )\).
c) \(\overrightarrow {AI} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AB} + \overrightarrow {AD} )\)\( = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
d) \(\overrightarrow {AJ} = \frac{1}{2}(\overrightarrow {AD} + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} .\)
Câu 2
a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.
c) Biểu diễn miền nghiệm của hệ là phần được tô đậm như trong hình dưới đây

Lời giải
a) S, b) S, c) Đ, d) S
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thấy tọa độ điểm \(\left( {4;1} \right)\) không thỏa mãn hệ nên \(\left( {4;1} \right)\) không thuộc miền nghiệm của hệ.
c) Miền nghiệm của hệ như hình vẽ

d) Ta có \(F\left( O \right) = 2024,F\left( H \right) = 2032,F\left( G \right) = 2030,F\left( E \right) = \frac{{6100}}{3}\) nên biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất là tại \(\left( {\frac{4}{3};\frac{4}{3}} \right)\).
Câu 3
A. \[\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \].
B. \[\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\tan \alpha = 3\).
b) \(\alpha \) là góc tù.
c) \(\sin \alpha = \frac{{3\sqrt {10} }}{{10}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
