Câu hỏi:

07/11/2025 81 Lưu

Phần không gạch chéo ở hình sau đây (kể cả biên) là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn đáp án \[A\,,\,\,B\,,\,\,C\,,\,\,D\]?

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

A. \(\left\{ \begin{array}{l}x - 2y > - 4\\x < 2y\end{array} \right.\);                                                            
B. \(\left\{ \begin{array}{l}x - 2y \ge - 4\\x < 2y\end{array} \right.\);  
C. \(\left\{ \begin{array}{l}x - 2y > - 4\\2x \ge y\end{array} \right.\);                                                            
D. \(\left\{ \begin{array}{l}x - 2y \ge - 4\\2x > y\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

+) Gọi đường thẳng \({d_1}:y = ax + b\)

Đường thẳng \({d_1}\) đi qua hai điểm \(\left( { - 4;\,0} \right)\)\(\left( {0;2} \right)\), khi đó thay lần lượt các cặp số vào phương trình \({d_1}\) ta được hệ phương trình:

\[\left\{ \begin{array}{l}0 = - 4a + b\\2 = 0.a + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = 2\end{array} \right.\]

\( \Rightarrow {d_1}:y = \frac{1}{2}x + 2\) hay \({d_1}:x - 2y = - 4\)

Lấy điểm \(M\left( {1;\,\,0} \right)\)\(1 - 2.0 = 1 > - 4\) và điểm \(M\left( {1;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình (không kể đường thẳng \({d_1}\)) nên ta có bất phương trình cần tìm là: \(x - 2y > - 4\).

+) Gọi đường thẳng \({d_2}:y = a'x + b'\)

Đường thẳng \({d_2}\) đi qua hai điểm \(\left( {0;\,0} \right)\)\(\left( {1;2} \right)\), khi đó thay lần lượt các cặp số vào phương trình \({d_2}\) ta được hệ phương trình:

\[\left\{ \begin{array}{l}0 = 0.a' + b'\\2 = 1.a' + b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a' = 2\\b' = 0\end{array} \right.\]

\( \Rightarrow {d_2}:y = 2x\) hay \({d_1}:2x - y = 0\)

Lấy điểm \(M\left( {1;\,\,0} \right)\)\(2.1 - 0 = 2 > 0\) và điểm \(M\left( {1;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình (kể cả đường thẳng \({d_2}\)) nên ta có bất phương trình cần tìm là: \(2x \ge y\).

Từ đó ta có hệ bất phương trình cần tìm là: \(\left\{ \begin{array}{l}x - 2y > - 4\\2x \ge y\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác \(AHB\) vuông tại \(H\), có:

\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)

\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)

\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).

\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)

\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)

Áp dụng định lí sin trong tam giác \(ABC\), có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)

Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).

Câu 2

A. 2;                            
B. 3;                             
C. 4;                                 
D. 6.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho lục giác đều \(ABCDEF\) tâm \(O\). Số các vectơ  bằng \(\overrightarrow {OC} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là A. 2;		B. 3;		C. 4;		D. 6. (ảnh 1)

Các vectơ bằng bằng \(\overrightarrow {OC} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BA} ,\,\,\overrightarrow {ED} \).

Vậy có 2 vectơ thỏa mãn điều kiện.

Câu 3

A. \(2a\);                       
B. \(a\sqrt 3 \);              
C. \(2a\sqrt 3 \);           
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP