Phần không gạch chéo ở hình sau đây (kể cả biên) là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn đáp án \[A\,,\,\,B\,,\,\,C\,,\,\,D\]?
Phần không gạch chéo ở hình sau đây (kể cả biên) là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn đáp án \[A\,,\,\,B\,,\,\,C\,,\,\,D\]?

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
+) Gọi đường thẳng \({d_1}:y = ax + b\)
Đường thẳng \({d_1}\) đi qua hai điểm \(\left( { - 4;\,0} \right)\) và \(\left( {0;2} \right)\), khi đó thay lần lượt các cặp số vào phương trình \({d_1}\) ta được hệ phương trình:
\[\left\{ \begin{array}{l}0 = - 4a + b\\2 = 0.a + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = 2\end{array} \right.\]
\( \Rightarrow {d_1}:y = \frac{1}{2}x + 2\) hay \({d_1}:x - 2y = - 4\)
Lấy điểm \(M\left( {1;\,\,0} \right)\) có \(1 - 2.0 = 1 > - 4\) và điểm \(M\left( {1;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình (không kể đường thẳng \({d_1}\)) nên ta có bất phương trình cần tìm là: \(x - 2y > - 4\).
+) Gọi đường thẳng \({d_2}:y = a'x + b'\)
Đường thẳng \({d_2}\) đi qua hai điểm \(\left( {0;\,0} \right)\) và \(\left( {1;2} \right)\), khi đó thay lần lượt các cặp số vào phương trình \({d_2}\) ta được hệ phương trình:
\[\left\{ \begin{array}{l}0 = 0.a' + b'\\2 = 1.a' + b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a' = 2\\b' = 0\end{array} \right.\]
\( \Rightarrow {d_2}:y = 2x\) hay \({d_1}:2x - y = 0\)
Lấy điểm \(M\left( {1;\,\,0} \right)\) có \(2.1 - 0 = 2 > 0\) và điểm \(M\left( {1;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình (kể cả đường thẳng \({d_2}\)) nên ta có bất phương trình cần tìm là: \(2x \ge y\).
Từ đó ta có hệ bất phương trình cần tìm là: \(\left\{ \begin{array}{l}x - 2y > - 4\\2x \ge y\end{array} \right.\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \(AHB\) vuông tại \(H\), có:
\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)
\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)
\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).
\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)
\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)
Áp dụng định lí sin trong tam giác \(ABC\), có:
\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)
Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Các vectơ bằng bằng \(\overrightarrow {OC} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BA} ,\,\,\overrightarrow {ED} \).
Vậy có 2 vectơ thỏa mãn điều kiện.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
