Câu hỏi:

10/11/2025 27 Lưu

Trong các mệnh đề dưới đây, mệnh đề nào đúng?

A. "x,x2+3=0" ;                              
B. "x,2x+121 chia hết cho 4;
C. "x,x5>x2" ;                                                                   
D. "x,x4+3x2+2=0".’

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

+) Xét phương trình \({x^2} + 3 = 0 \Leftrightarrow {x^2} =  - 3\) (vô lí). Do đó A là mệnh đề sai.

+) Ta có: \({\left( {2x + 1} \right)^2} - 1 = 4{x^2} + 4x + 1 - 1 = 4{x^2} + 4x = 4x(x + 1)\)

Vì \(x \in \mathbb{N}\) nên \(x\left( {x + 1} \right) \in \mathbb{N}\)suy ra \(4x(x + 1)\) chia hết cho 4 . Do đó B là mệnh đề đúng.

+) Với \(x =  - 1 \in \mathbb{Z}\) thì \({x^5} = {\left( { - 1} \right)^5} =  - 1\) và \({x^2} = {\left( { - 1} \right)^2} = 1\) khi đó \( - 1 < 1\) hay \({\left( { - 1} \right)^5} < {\left( { - 1} \right)^2}\). Do đó C là mệnh đề sai.

+) Xét phương trình \({x^4} + 3{x^2} + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} =  - 1\\{x^2} =  - 2\end{array} \right.\) (vô lí).

Suy ra phương trình vô nghiệm. Do đó D là mệnh đề sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}x - y < - 2\\x + 5y \ge 10\end{array} \right.\);                                  
B. \(\left\{ \begin{array}{l}x - y \ge 2\\x + 5y < 10\end{array} \right.\);                      
C. \(\left\{ \begin{array}{l}x + y \ge - 2\\x - 5y < 10\end{array} \right.\);               
D. \(\left\{ \begin{array}{l}x + y < - 2\\x + 5y \ge 10\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

+) Gọi đường thẳng \({d_1}\) có dạng \(y = ax + b\left( 1 \right)\)

Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( { - 2;\,\,0} \right)\)

Thay lần lượt tọa độ hai điểm này vào \(\left( 1 \right)\) ta được hệ phương trình:

\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.\left( { - 2} \right) + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\)

\( \Rightarrow {d_1}:y = x + 2\) hay \({d_1}:x - y =  - 2\)

Lấy \(O\left( {0;\,\,0} \right)\) có \(0 - 0 = 0 >  - 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm không kể đường thẳng \[{d_1}\] nên ta có bất phương trình \(x - y <  - 2\).

+) Gọi đường thẳng \({d_2}\) có dạng \(y = a'x + b'\left( 2 \right)\)

Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( {10;\,\,0} \right)\)

Thay lần lượt tọa độ hai điểm này vào \(\left( 2 \right)\) ta được hệ phương trình:

\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.10 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{1}{5}\\b = 2\end{array} \right.\)

\( \Rightarrow {d_2}:y =  - \frac{1}{5}x + 2\) hay \({d_2}:x + 5y = 10\)

Lấy \(O\left( {0;\,\,0} \right)\) có \(0 + 5.0 = 0 < 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm kể cả đường thẳng \[{d_2}\] nên ta có bất phương trình \(x + 5y \ge 10\).

Lời giải

Hướng dẫn giải

Gọi \(x\) là số bàn và \(y\) là số ghế anh An đóng được trong một tuần \(\left( {x;y\,\, \ge 0} \right)\).

Số giờ đề đóng \(x\) chiếc bàn và \(y\) chiếc ghế là: \(6x + 3y\) (giờ).

Mỗi tuần anh làm việc không quá \(60\) giờ nên ta có bất phương trình: \(6x + 3y \le 60\) (1).

Vì số ghế nhiều hơn số bàn ít nhất \(2\) lần nên ta có: \(y \ge 2x\)(2)

Từ (1) và (2) ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\6x + 3y \le 60\\y \ge 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 20\\ - 2x + y \ge 0\end{array} \right.\)

Miền nghiệm của hệ bất phương trình là miền trong của tam giác \(OAB\) với \(O\left( {0;\,\,0} \right),\,A\left( {5;\,\,10} \right),\,\,B\left( {0;20} \right)\).

Anh An làm nghề thợ mộc chuy (ảnh 1)

Số tiền lãi thu được: \(F\left( {x;\,\,y} \right) = 150x + 100y\) (nghìn đồng).

Ta có:

Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 150.0 + 100.0 = 0\);

Tại \(A\left( {5;\,\,10} \right)\) có \(F\left( {5;\,\,10} \right) = 150.5 + 100.10 = 1\,\,750\);

Tại \(B\left( {0;20} \right)\) có \(F\left( {0;\,\,20} \right) = 150.0 + 100.20 = 2\,\,000\).

Vậy một tuần anh An phải đóng được \(0\) chiếc bàn và \(20\)chiếc ghế để tiền lãi thu được là lớn nhất.

Câu 4

A.\(\left( {3;\,\,0} \right)\);                             
B. \(\left( {0;\,\, - 2} \right)\);                 
C. \((0;\,\,0)\);              
D. \(\left( {5;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {A \cup B} \right)\backslash C\); 
B. \(\left( {A \cap B} \right)\backslash C\);                                
C. \(\left( {A \cap B} \right) \cap C\);     
D. \(\left( {A \cap B} \right) \cup C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x \ge 0\\x - y \le 10\\y \ge 0\end{array} \right.\);                                    
B. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 100\\y \ge 0\end{array} \right.\);                      
C. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 0\\y \ge 0\end{array} \right.\);            
D. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 10\\y \ge 100\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Nếu \(\alpha > \beta \) thì \(\tan \alpha > \tan \beta \);                                                                     
B. Nếu \(\alpha = - \beta \) thì \[{\rm{cos}}\alpha = {\rm{cos}}\beta \];                                 
C. Nếu \(\alpha > \beta \) thì \(\sin \alpha = - \sin \beta \);                                                                     
D. Nếu \(\alpha = - \beta \) thì \(\cot \alpha = \cot \beta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP